The complexity of thermal elastohydrodynamic lubrication (TEHL) problems has led to a variety of specialised numerical approaches ranging from finite difference based direct and inverse iterative methods such as Multilevel Multi-Integration solvers, via differential deflection methods, to finite element based full-system approaches. Hence, not only knowledge of the physical and technical relationships but also knowledge of the numerical procedures and solvers is necessary to perform TEHL simulations. Considering the state of the art of multiphysics software, the authors note the absence of a commercial software package for solving TEHL problems embedded in larger multiphysics software. By providing guidelines on how to implement a TEHL simulation model in commercial multiphysics software, the authors want to stimulate the research in computational tribology, so that, hopefully, the research focus can be shifted even more on physical modelling instead of numerical modelling. Validations, as well as result examples of the suggested TEHL model by means of simulated coefficients of friction, coated surfaces, and nonsmooth surfaces, highlight the flexibility and simplicity of the presented approach.
The application of polymers in power-transmitting machine elements, e.g., gears, is limited by moderate thermo-mechanical properties and the detrimental accumulation of contact heat, even with external lubrication. Hence, polymer rolling–sliding elements are often prone to thermo-mechanical overload or abrasive wear. Diamond-like carbon (DLC) coatings are well known from steel applications for enhancing wear resistance and reducing friction. Since preliminary results indicate promising results for such coatings for polymers as well, their influence on the behavior of lubricated polymer contacts is investigated by numerical simulation. For polymer–steel contacts, the mechanical and thermophysical properties of coating and polymer are varied. The contact geometry is dominated by a local conformity, in which most of the deformation is related to the polymer. The DLC coatings affect film thickness and hydrodynamic pressure only little even for untypical high coating thicknesses. In contrast, the contact temperature decreases already for very thin coatings due to enhanced heat removal. Hence, DLC coatings can act as a thermal barrier protecting the polymer from detrimental heat and protecting the polymer from abrasive wear.
Diamond-Like Carbon (DLC) coatings can reduce fluid friction in TEHL contacts (thermo-elastohydrodynamic lubrication) of meshing gears. This study investigates the influence of different base oils i.e., mineral, polyalphaolefin and polyglycol oil on the friction of DLC coated spur gears. Thereby, a transient TEHL simulation model based on the finite element based full-system approach coupled iteratively with the thermal equations is applied, considering mechanical and thermal properties of the DLC coatings. Results show a clear reduction of fluid friction in DLC coated gears for all considered lubricants. This can be traced back to higher TEHL temperatures for DLC coated gears, which is due to its low thermal inertia resulting in a thermal insulation effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.