a b s t r a c tDynamics of human populations depends on various economical and social factors. Their migration is partially determined by the economical conditions and it can also influence these conditions. This work is devoted to the analysis of the interaction of human migration and wealth distribution. The model consists of a system of equations for the population density and for the wealth distribution with conventional diffusion terms and with cross diffusion terms describing human migration determined by the wealth gradient and wealth flux determined by human migration. Wealth production and consumption depend on the population density while the natality and mortality rates depend on the level of wealth. In the absence of cross diffusion terms, dynamics of solutions is described by travelling wave solutions of the corresponding reaction-diffusion systems of equations. We show persistence of such solutions for sufficiently small cross diffusion coefficients. This result is based on the perturbation methods and on the spectral properties of the linearized operators.
Human population growth has been called the biggest issue the humanity faces in the 21st century, and although this statement is globally true, locally, many Western economies have been experiencing population decline. Europe is in fact homeland for population decline. By 2050 many large European economies are predicted to lose large parts of their population. In this work, we consider the dynamical system that corresponds to the model introduced by Volpert et al. [Nonlinear Anal. 159 (2017) 408–423]. With the help of this model, we illustrate scenarios that can lead, in the long-run, to sharp population decline and/or deterioration of the economy. We also illustrate that even when under certain conditions the population will go extinct, temporarily it might experience growth.
Spatial distribution of the human population is distinctly heterogeneous, e.g. showing significant difference in the population density between urban and rural areas. In the historical perspective, i.e. on the timescale of centuries, the emergence of densely populated areas at their present locations is widely believed to be linked to more favourable environmental and climatic conditions. In this paper, we challenge this point of view. We first identify a few areas at different parts of the world where the environmental conditions (quantified by the temperature, precipitation and elevation) show a relatively small variation in space on the scale of thousands of kilometres. We then examine the population distribution across those areas to show that, in spite of the approximate homogeneity of the environment, it exhibits a significant variation revealing a nearly periodic spatial pattern. Based on this apparent disagreement, we hypothesize that there may exist an inherent mechanism that may lead to pattern formation even in a uniform environment. We consider a mathematical model of the coupled demographic-economic dynamics and show that its spatially uniform, locally stable steady state can give rise to a periodic spatial pattern due to the Turing instability, the spatial scale of the emerging pattern being consistent with observations. Using numerical simulations, we show that, interestingly, the emergence of the Turing patterns may eventually lead to the system collapse.
Abstract. The phenomenon of replacement migration into declining population prompts development of multicomponent models in population dynamics. We propose a simple model of population including resident and migrant components with migration flow as an external input. The main assumption is that offspring that are born to migrants will have the same vital rates as the resident population. The proposed model is based on partial differential equation to take into account the age structure of the population. The formulae for exact solutions are derived. We focus on the case when native population declines in the absence of migration. Assuming a sufficiently large constant growth rate of migration we obtain asymptotic solutions as t → ∞. Using the asymptotic solutions, we have calculated "critical" value of growth rate of migrant inflow that is the value that provides, as time tends to infinity, the equal number of residents and migrants in the population. We provide numerical illustrations using demographic data for Germany in 2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.