Airborne high resolution oblique imagery systems and RPAS/UAVs are very promising technologies that will keep on influencing the development of geomatics in the future years closing the gap between terrestrial and classical aerial acquisitions. These two platforms are also a promising solution for National Mapping and Cartographic Agencies (NMCA) as they allow deriving complementary mapping information. Although the interest for the registration and integration of aerial and terrestrial data is constantly increasing, only limited work has been truly performed on this topic. Several investigations still need to be undertaken concerning algorithms ability for automatic co-registration, accurate point cloud generation and feature extraction from multiplatform image data. One of the biggest obstacles is the non-availability of reliable and free datasets to test and compare new algorithms and procedures. The Scientific Initiative "ISPRS benchmark for multi-platform photogrammetry", run in collaboration with EuroSDR, aims at collecting and sharing state-of-the-art multi-sensor data (oblique airborne, UAV-based and terrestrial images) over an urban area. These datasets are used to assess different algorithms and methodologies for image orientation and dense matching. As ground truth, Terrestrial Laser Scanning (TLS), Aerial Laser Scanning (ALS) as well as topographic networks and GNSS points were acquired to compare 3D coordinates on check points (CPs) and evaluate cross sections and residuals on generated point cloud surfaces. In this paper, the acquired data, the pre-processing steps, the evaluation procedures as well as some preliminary results achieved with commercial software will be presented.
ABSTRACT:Different UAV platforms and sensors are used in mapping already, many of them equipped with (sometimes) modified cameras as known from the consumer market. Even though these systems normally fulfil their requested mapping accuracy, the question arises, which system performs best? This asks for a benchmark, to check selected UAV based camera systems in well-defined, reproducible environments. Such benchmark is tried within this work here. Nine different cameras used on UAV platforms, representing typical camera classes, are considered. The focus is laid on the geometry here, which is tightly linked to the process of geometrical calibration of the system. In most applications the calibration is performed in-situ, i.e. calibration parameters are obtained as part of the project data itself. This is often motivated because consumer cameras do not keep constant geometry, thus, cannot be seen as metric cameras. Still, some of the commercial systems are quite stable over time, as it was proven from repeated (terrestrial) calibrations runs. Already (pre-)calibrated systems may offer advantages, especially when the block geometry of the project does not allow for a stable and sufficient in-situ calibration. Especially for such scenario close to metric UAV cameras may have advantages. Empirical airborne test flights in a calibration field have shown how block geometry influences the estimated calibration parameters and how consistent the parameters from lab calibration can be reproduced.
ABSTRACT:The acquisition of photogrammetric image data by means of Unmanned Aerial Vehicles (UAV) has developed in recent years to an interesting new measurement method especially for small to medium sizes of objects. In addition the latest developments in the field of navigation systems (GNSS), of inertial sensors and other sensors in combination with powerful and easy to program microcontrollers have made a major contribution to this. In particular, the development of MEMS sensors has triggered the boom of the UAV and has given decisively influence and it is still going on. The integration of sensors on a single board not only enables a cost-effective manufacturing and mass production, but also the use in accordance with small, lightweight UAV. The latest developments on a 50 mm x 50 mm-sized circuit board combine the sensors and the microcontroller for the flight control and flight navigation. Both the board and the microcontroller are easy to program and maintain several interfaces for connecting additional sensors, such as GNSS, ultrasonic sensors and telemetry.This article presents the UAV system of the Bochum University of Applied Sciences, the used sensors and the obtained results for accurate georeferencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.