Abstractp53 is a complex molecule involved in apoptosis, cell cycle arrest, and DNA repair. Since apoptosis may play an important role in deletion of neoplastic cells, an understanding of the mechanism of p53-induced apoptosis may be critical for possible future therapeutic interventions. Recent evidence suggests that p53-induced apoptosis may involve members of the nucleotide excision repair (NER) family, linking these two cellular events. Our work using a temperature-sensitive p53 construct further analyzes p53-induced apoptosis in cultured murine mammary epithelial cells and also suggests that DNA repair plays a role in that process. Although p21 is induced in our system, apoptosis occurs without a detectable preceding G1 cell cycle arrest and independent of cellular alterations brought on by the temperature shift. In addition, clonogenic assays suggest that early stages of p53-induced apoptosis may be reversible upon removal of the apoptosis stimulus. As a possible explanation for this reversibility, our results show that general DNA repair activity increases early in p53-induced apoptosis. We also show that caspase-3 is activated at a timepoint when colony formation begins to drop, suggesting a possible mechanism for the point of no return in p53-induced apoptosis. Cell Death and Differentiation (2000) 7, 393 ± 401.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.