Aims. We investigate the physical and chemical conditions in a typical star forming region, including an unbiased search for new molecules in a spectral region previously unobserved. Methods. Due to its proximity, the Orion KL region offers a unique laboratory of molecular astrophysics in a chemically rich, massive star forming region. Several ground-based spectral line surveys have been made, but due to the absorption by water and oxygen, the terrestrial atmosphere is completely opaque at frequencies around 487 and 557 GHz. To cover these frequencies we used the Odin satellite to perform a spectral line survey in the frequency ranges 486−492 GHz and 541−577 GHz, filling the gaps between previous spectral scans. Odin's high main beam efficiency, η mb = 0.9, and observations performed outside the atmosphere make our intensity scale very well determined.
Context. Molecular oxygen, O 2 , has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from space have failed to detect O 2 emission. Aims. The work described here uses heterodyne spectroscopy from space to search for molecular oxygen in the interstellar medium. Methods. The Odin satellite carries a 1.1 m sub-millimeter dish and a dedicated 119 GHz receiver for the ground state line of O 2 . Starting in 2002, the star forming molecular cloud core ρ Oph A was observed with Odin for 34 days during several observing runs. Results. We detect a spectral line at v LSR = +3.5 km s −1 with ∆v FWHM = 1.5 km s −1 , parameters which are also common to other species associated with ρ Oph A. This feature is identified as the O 2 (N J = 1 1 −1 0 ) transition at 118 750.343 MHz. Conclusions. The abundance of molecular oxygen, relative to H 2 , is 5 × 10 −8 averaged over the Odin beam. This abundance is consistently lower than previously reported upper limits.
The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30 m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January-3 February 2015. We detected 22 molecules and several isotopologues. The H (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.
Abstract. We present Odin observations of the AGB star W Hya in the ground-state transition of ortho-H 2 O, 1 10 − 1 01 , at 557 GHz. The line is clearly of circumstellar origin. Radiative transfer modelling of the water lines observed by Odin and ISO results in a mass-loss rate of (2.5 ± 0.5) × 10 −7 M yr −1 , and a circumstellar H 2 O abundance of (2.0 ± 1.0) × 10 −3 . The inferred mass-loss rate is consistent with that obtained from modelling the circumstellar CO radio line emission, and also with that obtained from the dust emission modelling combined with a dynamical model for the outflow. The very high water abundance, higher than the cosmic oxygen abundance, can be explained by invoking an injection of excess water from evaporating icy bodies in the system. The required extra mass of water is quite small, on the order of ∼0.1 M ⊕ .
Abstract. The Odin satellite, which can observe the 1 10 -1 01 rotational line at 557 GHz of ortho water with a high spectral resolution (80 m s −1 ) and a spatial resolution of 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.