Emulsions are mixtures of two immiscible liquids in which droplets of one are dispersed in a continuous phase of the other. The most common emulsions are oil–water systems, which have found widespread use across a number of industries, for example, in the cosmetic and food industries, and are also of advanced scientific interest. In addition, the past decade has seen a significant increase in both the design and application of nonaqueous emulsions. This has been primarily driven by developments in understanding the mechanism of effective stabilization of oil-in-oil (o/o) systems, either using block copolymers (BCPs) or solid (Pickering) particles with appropriate surface functionality. These systems, as highlighted in this review, have enabled emergent applications in areas such as pharmaceutical delivery, energy storage, and materials design (e.g., polymerization, monolith, and porous polymer synthesis). These o/o emulsions complement traditional emulsions that utilize an aqueous phase and allow the use of materials incompatible with water. We assess recent advances in the preparation and stabilization of o/o emulsions, focusing on the identity of the stabilizer (BCP or particle), the interplay between stabilizer and oils, and highlighting applications and opportunities associated with o/o emulsions.
ZIKV has emerged as grave global health issue in the past few years. ZIKV was firstly isolated in 1947 from a rhesus sentinel monkey in the Zika forest in Uganda. It is usually transmitted by the bite of infected mosquitoes and infects skin fibroblasts, skin keratinocytes, etc. ZIKV until now was under reported because of its clinical similarity with the dengue and chikungunya. It is usually spread through the course of the sylvatic cycle. In this cycle, the virus or pathogen lifespan is spent between the wild animal and vectors. The intrinsic incubation period is not yet fully known but it is observed that the very first symptoms of ZIKV infection can appear or develop within 3-12 days of time period and usually subside within 7 days of time. There is a strong relationship between prenatal Zika virus infection and microcephaly; other serious brain anomalies to the infant or newborn are Guillain-Barré syndrome. To date no vaccines are available for ZIKV prevention hence only symptomatic treatment is recommended in infected patients. Usually ZIKV is detected by serologic (IgM ELISA), plaque reduction neutralization test (PRNT) along with in-house" molecular techniques (RT-PCR). ZIKV infection being imminent global health issue warrants strong protective measures to prevent it from becoming an epidemic. Early detection and prevention is the key to tackle this grave potential health hazard. J. Med. Virol. 89:943-951, 2017. © 2017 Wiley Periodicals, Inc.
We present a new biscarboxylic acid acrylate, which is used for the synthesis of double hydrophilic EDTA-mimicking block copolymers capable of self-assembly upon zirconium complexation.
The spontaneous zwitterionic copolymerization (SZWIP) of 2-oxazolines and acrylic acid affords biocompatible but low molecular weight linear N-acylated poly(amino ester)s (NPAEs). Here, we present a facile one-step approach to prepare functional higher molar mass cross-linked NPAEs using 2,2′-bis(2-oxazoline)s (BOx). In the absence of solvent, insoluble free-standing gels were formed from BOx with different length n-alkyl bridging units, which when butylene-bridged BOx was used possessed an inherent green fluorescence, a behavior not previously observed for 2-oxazoline-based polymeric materials. We propose that this surprising polymerization-induced emission can be classified as nontraditional intrinsic luminescence. Solution phase and oil-in-oil emulsion approaches were investigated as means to prepare solution processable fluorescent NPAEs, with both resulting in water dispersible network polymers. The emulsion-derived system was investigated further, revealing pH-responsive intensity of emission and excellent photostability. Residual vinyl groups were shown to be available for modifications without affecting the intrinsic fluorescence. Finally, these systems were shown to be cytocompatible and to function as fluorescent bioimaging agents for in vitro imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.