A critical step in topology optimization (TO) is finding sensitivities. Manual derivation and implementation of the sensitivities can be quite laborious and error-prone, especially for non-trivial objectives, constraints and material models. An alternate approach is to utilize automatic differentiation (AD). While AD has been around for decades, and has also been applied in TO, wider adoption has largely been absent. In this educational paper, we aim to reintroduce AD for TO, and make it easily accessible through illustrative codes. In particular, we employ JAX, a high-performance Python library for automatically computing sensitivities from a user defined TO problem. The resulting framework, referred to here as AuTO, is illustrated through several examples in compliance minimization, compliant mechanism design and microstructural design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.