The Kondo lattice model plays a key role in our understanding of quantum materials, but a lack of small parameters has posed a long-standing problem. We present a 3 dimensional S= 1/2 Kondo lattice model describing a spin liquid within an electron sea. Strong correlations in the spin liquid are treated exactly, enabling a controlled analytical approach. Like a Peierls or BCS phase, a logarithmically divergent susceptibility leads to an instability into a new phase at arbitrarily small Kondo coupling. Our solution captures a plethora of emergent phenomena, including odd-frequency pairing, pair density wave formation and order fractionalization. The ground-state state is a pair density wave with a fractionalized charge e, S = 1/2 order parameter, formed between electrons and Majorana fermions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.