Given the potential of productive interaction between choline-based amino acid ionic liquids (CAAILs) and collagen, we investigated the role of four CAAILs, viz., choline serinate, threoninate, lysinate, and phenylalaninate, and the changes mediated by them in the structure of collagen at different hierarchical orderings, that is, at molecular and fibrillar levels. The rheological, dielectric behavior and the secondary structural changes signify the alteration in the triple helical structure of collagen at higher concentrations of CAAILs. A marginal swelling and slight decrease in the thermal stability of rat tail tendon collagen fibers were observed for choline serinate and threoninate, albeit distortions in banding patterns were noticed for choline lysinate and phenylalaninate, suggesting chaotropicity of the ions at the fibrillar level. This signifies the changes in the hydrogen-bonding environment of collagen with increasing concentrations of CAAILs, which could be due to competitive hydrogen bonding between the carbonyl group of amino acid ionic liquids and the hydroxyl groups of collagen.
Ions play a key role in the destabilization of collagen. This study explores the effect of diethyl methyl ammonium methane sulfonate (AMS), an ionic liquid (IL), on different hierarchical orderings of collagen, namely, at the molecular and fibrillar levels. The rheological behavior and secondary structural changes reveal changes in the hydrogen-bonding environment of collagen, leading to alterations in the triple helical structure of collagen. An increase in the concentration of AMS resulted in swelling of rat-tail tendon fibers, and also, decreased thermal stability signifies that ions are obliged to destabilize collagen at the fibrillar level. Molecular modeling studies confirm that anions are judiciously held responsible for structural deformities in collagen, whereas cations have a tenuous effect. Thus, the preferential role of ions present in an ammonium IL has been elucidated in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.