A computationally fast tone mapping operator (TMO) that can quickly adapt to a wide spectrum of high dynamic range (HDR) content is quintessential for visualization on varied low dynamic range (LDR) output devices such as movie screens or standard displays. Existing TMOs can successfully tone-map only a limited number of HDR content and require an extensive parameter tuning to yield the best subjective-quality tone-mapped output. In this paper, we address this problem by proposing a fast, parameter-free and scene-adaptable deep tone mapping operator (DeepTMO) that yields a high-resolution and high-subjective quality tone mapped output. Based on conditional generative adversarial network (cGAN), DeepTMO not only learns to adapt to vast scenic-content (e.g., outdoor, indoor, human, structures, etc.) but also tackles the HDR related scenespecific challenges such as contrast and brightness, while preserving the fine-grained details. We explore 4 possible combinations of Generator-Discriminator architectural designs to specifically address some prominent issues in HDR related deep-learning frameworks like blurring, tiling patterns and saturation artifacts. By exploring different influences of scales, loss-functions and normalization layers under a cGAN setting, we conclude with adopting a multi-scale model for our task. To further leverage on the large-scale availability of unlabeled HDR data, we train our network by generating targets using an objective HDR quality metric, namely Tone Mapping Image Quality Index (TMQI). We demonstrate results both quantitatively and qualitatively, and showcase that our DeepTMO generates high-resolution, high-quality output images over a large spectrum of real-world scenes. Finally, we evaluate the perceived quality of our results by conducting a pair-wise subjective study which confirms the versatility of our method.
International audienceHigh dynamic range (HDR) imaging enables to capture details in both dark and very bright regions of a scene, and is therefore supposed to provide higher robustness to illumination changes than conventional low dynamic range (LDR) imaging in tasks such as visual features extraction. However, it is not clear how much this gain is, and which are the best modalities of using HDR to obtain it. In this paper we evaluate the first block of the visual feature extraction pipeline, i.e., keypoint detection, using both LDR and different HDR-based modalities, when significant illumination changes are present in the scene. To this end, we captured a dataset with two scenes and a wide range of illumination conditions. On these images, we measure how the repeatability of either corner or blob interest points is affected with different LDR/HDR approaches. Our observations confirm the potential of HDR over conventional LDR acquisition. Moreover, extracting features directly from HDR pixel values is more effective than first tonemapping and then extracting features, provided that HDR luminance information is previously encoded to perceptually linear values
An omnidirectional image (ODI) enables viewers to look in every direction from a fixed point through a headmounted display providing an immersive experience compared to that of a standard image. Designing immersive virtual reality systems with ODIs is challenging as they require high resolution content. In this paper, we study super-resolution for ODIs and propose an improved generative adversarial network based model which is optimized to handle the artifacts obtained in the spherical observational space. Specifically, we propose to use a fast PatchGAN discriminator, as it needs fewer parameters and improves the super-resolution at a fine scale. We also explore the generative models with adversarial learning by introducing a spherical-content specific loss function, called 360-SS. To train and test the performance of our proposed model we prepare a dataset of 4500 ODIs. Our results demonstrate the efficacy of the proposed method and identify new challenges in ODI superresolution for future investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.