Jute based green composites are emerging materials due to their certain attractive properties like appropriate strength to weight ratio, high damping ratio, low price and corrosion resistance. Jute/carbon hybrid composite can replace carbon fiber reinforced composites without much loss in tensile strength. These hybrid composites are now being used in various automobile interior and exterior parts. In this study tensile behavior of carbon/jute reinforced epoxy hybrid textile composites, for different volume fractions of carbon and jute fibers, is studied experimentally and numerically. Tensile behavior of composite materials is always required for design and analysis of any structure. It is found that with increase in jute percentage tensile strength of hybrid composite decrease. Numerical results agrees well with experimental results and error increases with increase in jute percentage due to heterogeneous jute properties and waviness of fabrics. Fractographic study reveals that delamination phenomenon exists in between plies and jute fiber shows more pullout than carbon fiber. Scanning electron microscope analysis depicted that matrix fails in form of fragmentation while fibers show pullout during failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.