A summary of the extremely efficient organic phosphors that utilized the best possible ways to manipulate the fate of triplet excitons for achieving a long lifetime along with impressive quantum yield and afterglow properties is provided.
Room‐temperature phosphorescence of metal and heavy atom‐free organic molecules has emerged as an area of great potential in recent years. A rational design played a critical role in controlling the molecular ordering to impart efficient intersystem crossing and stabilize the triplet state to achieve room‐temperature ultralong phosphorescence. However, in most cases, the strategies to strengthen phosphorescence efficiency have resulted in a reduced lifetime, and the available nearly degenerate singlet‐triplet energy levels impart a natural competition between delayed fluorescence and phosphorescence, with the former one having the advantage. Herein, an organic helical assembly supports the exhibition of an ultralong phosphorescence lifetime. In contrary to other molecules, 3,6‐phenylmethanone functionalized 9‐hexylcarbazole exhibits a remarkable improvement in phosphorescence lifetime (>4.1 s) and quantum yield (11 %) owing to an efficient molecular packing in the crystal state. A right‐handed helical molecular array act as a trap and exhibits triplet exciton migration to support the exceptionally longer phosphorescence lifetime.
Solvent-free organic liquids have been known for their excellent luminescent features. Hence, the recent developments in this area have marked them as potential emitters with high quantum yield and enhanced...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.