The multi-disciplinary field of microfluidics has the potential to provide solutions to a diverse set of problems. It offers the advantages of high-throughput, continuous, rapid and expeditious analysis requiring minute quantities of sample. However, even as this field has yielded many mass-manufacturable and cost-efficient point-of-care devices, its direct and practical applications into the field of disease diagnostics still remain limited and largely overlooked by the industry. This review focuses on the phenomenon of hydrodynamic focusing and its potential to materialize solutions for appropriate diagnosis and prognosis. The study aims to look beyond its intended cytometric applications and focus on unambiguous disease detection, monitoring, drug delivery, studies conducted on DNA and highlight the instances in the scientific literature that have proposed such approach.
Separation processes aimed at recovering the solvent from effluent streams offer a means for establishing a circular economy. Conventional technologies such as distillation are energy-intensive, inefficient and suffer from high operating and maintenance costs. Pervaporation based membrane separation overcomes these challenges and in conjunction with the utilization of inorganic membranes derived from non-toxic, sufficiently abundant and hence expendable, silica, allows for high operating temperatures and enhanced chemical and structural integrity. Membrane-based separation is predicted to dominate the industry in the coming decades, as the process is being understood at a deeper level, leading to the fabrication of tailored membranes for niche applications. The current review aims to compile and present the extensive and often dispersive scientific investigations to the reader and highlight the current scenario as well as the limitations suffered by this mature field. In addition, viable alternative to the conventional methodologies, as well as other rival materials in existence to achieve membrane-based pervaporation are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.