Over the past two decades, Unmanned Aerial Vehicles (UAVs), more commonly known as drones, have gained a lot of attention, and are rapidly becoming ubiquitous because of their diverse applications such as surveillance, disaster management, pollution monitoring, film-making, and military reconnaissance. However, incidents such as fatal system failures, malicious attacks, and disastrous misuses have raised concerns in the recent past. Security and viability concerns in drone-based applications are growing at an alarming rate. Besides, UAV networks (UAVNets) are distinctive from other ad-hoc networks. Therefore, it is necessary to address these issues to ensure proper functioning of these UAVs while keeping their uniqueness in mind. Furthermore, adequate security and functionality require the consideration of many parameters that may include an accurate cognizance of the working mechanism of vehicles, geographical and weather conditions, and UAVNet communication. This is achievable by creating a simulator that includes these aspects. A performance evaluation through relevant drone simulator becomes indispensable procedure to test features, configurations, and designs to demonstrate superiority to comparative schemes and suitability. Thus, it becomes of paramount importance to establish the credibility of simulation results by investigating the merits and limitations of each simulator prior to selection. Based on this motivation, we present a comprehensive survey of current drone simulators. In addition, open research issues and research challenges are discussed and presented.
This paper proposes a semi-supervised autoencoder based approach for the detection of anomalies in turbofan engines. Data used in this research is generated through simulation of turbofan engines created using a tool known as Commercial Modular Aero-Propulsion System Simulation (CMAPSS). C-MAPSS allows users to simulate various operational settings, environmental conditions, and control settings by varying various input parameters. Optimal architecture of autoencoder is discovered using Bayesian hyperparameter tuning approach. Autoencoder model with optimal architecture is trained on data representing normal behavior of turbofan engines included in training set. Performance of trained model is then tested on data of engines included in test set. To study the effect of redundant features removal on performance, two approaches are implemented and tested: with and without redundant features removal. Performance of proposed models is evaluated using various performance evaluation metrics like F1-score, Precision and Recall. Results have shown that best performance is achieved when autoencoder model is used without redundant feature removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.