Two analytic traditions characterize fMRI language research. One relies on averaging activations across individuals. This approach has limitations: because of inter-individual variability in the locations of language areas, any given voxel/vertex in a common brain space is part of the language network in some individuals but in others, may belong to a distinct network. An alternative approach relies on identifying language areas in each individual using a functional ‘localizer’. Because of its greater sensitivity, functional resolution, and interpretability, functional localization is gaining popularity, but it is not always feasible, and cannot be applied retroactively to past studies. To bridge these disjoint approaches, we created a probabilistic functional atlas using fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables estimating the probability that any given location in a common space belongs to the language network, and thus can help interpret group-level activation peaks and lesion locations, or select voxels/electrodes for analysis. More meaningful comparisons of findings across studies should increase robustness and replicability in language research.
Two analytic traditions characterize fMRI language research. One relies on averaging activations voxel-wise across individuals. This approach has limitations: because of inter-individual variability in the locations of language areas, a location in a common brain space cannot be meaningfully linked to function. An alternative approach relies on identifying language areas in each individual using a functional ‘localizer’. Because of its greater sensitivity, functional resolution, and interpretability, functional localization is gaining popularity, but it is not always feasible, and cannot be applied retroactively to past studies. We provide a solution for bridging these currently disjoint approaches in the form of a probabilistic functional atlas created from fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables estimating the probability that any given location in a common brain space belongs to the language network, and thus can help interpret group-level peaks and meta-analyses of such peaks, and lesion locations in patient investigations. More meaningful comparisons of findings across studies should increase robustness and replicability in language research.
Transformer language models are today's most accurate models of language processing in the brain. Here, using fMRI-measured brain responses to 1,000 diverse sentences, we develop a GPT-based encoding model to identify new sentences that are predicted to drive or suppress responses in the human language network. We demonstrate that these model-selected 'out-of distribution' sentences indeed drive and suppress activity of human language areas in new individuals (85.7% increase and 97.5% decrease relative to the diverse naturalistic sentences). A systematic analysis of the model-selected sentences reveals that surprisal and well-formedness of linguistic input are key determinants of response strength in the language network. These results establish the ability of accurate models of the brain to noninvasively control neural activity in higher-level cortical areas, like the language network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.