Countries and cities are likely to enter economic activities that are related to those that are already present in them. Yet, while these path dependencies are universally acknowledged, we lack an understanding of the diversification strategies that can optimally balance the development of related and unrelated activities. Here, we develop algorithms to identify the activities that are optimal to target at each time step. We find that the strategies that minimize the total time needed to diversify an economy target highly connected activities during a narrow and specific time window. We compare the strategies suggested by our model with the strategies followed by countries in the diversification of their exports and research activities, finding that countries follow strategies that are close to the ones suggested by the model. These findings add to our understanding of economic diversification and also to our general understanding of diffusion in networks.
The SEIR (Susceptible-Exposed-Infected-Removed) model is widely used in epidemiology to mathematically model the spread of infectious diseases with incubation periods. However, the SEIR model prototype is generic and not able to capture the unique nature of a novel viral pandemic such as SARS-CoV-2. We have developed and tested a specialized version of the SEIR model, called SEAHIR (Susceptible-Exposed-Asymptomatic-Hospitalized-Isolated-Removed) model. This proposed model is able to capture the unique dynamics of the COVID-19 outbreak including further dividing the Infected compartment into: (1) “Asymptomatic”, (2) “Isolated” and (3) “Hospitalized” to delineate the transmission specifics of each compartment and forecast healthcare requirements. The model also takes into consideration the impact of non-pharmaceutical interventions such as physical distancing and different testing strategies on the number of confirmed cases. We used a publicly available dataset from the United Arab Emirates (UAE) as a case study to optimize the main parameters of the model and benchmarked it against the historical number of cases. The SEAHIR model was used by decision-makers in Dubai’s COVID-19 Command and Control Center to make timely decisions on developing testing strategies, increasing healthcare capacity, and implementing interventions to contain the spread of the virus. The novel six-compartment SEAHIR model could be utilized by decision-makers and researchers in other countries for current or future pandemics.
Contagion, a concept from epidemiology, has long been used to characterize social influence on people’s behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals’ behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.
During the last decades two important contributions have reshaped our understanding of international trade. First, countries trade more with those with whom they share history, language, and culture, suggesting that trade is limited by information frictions. Second, countries are more likely to start exporting products that are similar to their current exports, suggesting that knowledge diffusion among related industries is a key constrain shaping the diversification of exports. But does knowledge about how to export to a destination also diffuses among related products and geographic neighbors? Do countries need to learn how to trade each product to each destination? Here, we use bilateral trade data from 2000 to 2015 to show that countries are more likely to increase their exports of a product to a destination when: (i) they export related products to it, (ii) they export the same product to the neighbor of a destination, (iii) they have neighbors who export the same product to that destination. Then, we explore the magnitude of these effects for new, nascent, and experienced exporters, (exporters with and without comparative advantage in a product) and also for groups of products with different level of technological sophistication. We find that the effects of product and geographic relatedness are stronger for new exporters, and also, that the effect of product relatedness is stronger for more technologically sophisticated products. These findings support the idea that international trade is shaped by information frictions that are reduced in the presence of related products and experienced geographic neighbors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.