The problem of automatic identification of physical activities performed by human subjects is referred to as Human Activity Recognition (HAR). There exist several techniques to measure motion characteristics during these physical activities, such as Inertial Measurement Units (IMUs). IMUs have a cornerstone position in this context, and are characterized by usage flexibility, low cost, and reduced privacy impact. With the use of inertial sensors, it is possible to sample some measures such as acceleration and angular velocity of a body, and use them to learn models that are capable of correctly classifying activities to their corresponding classes. In this paper, we propose to use Convolutional Neural Networks (CNNs) to classify human activities. Our models use raw data obtained from a set of inertial sensors. We explore several combinations of activities and sensors, showing how motion signals can be adapted to be fed into CNNs by using different network architectures. We also compare the performance of different groups of sensors, investigating the classification potential of single, double and triple sensor systems. The experimental results obtained on a dataset of 16 lowerlimb activities, collected from a group of participants with the use of five different sensors, are very promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.