The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low . Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0.01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, τ .Recently, the BICEP2 experiment announced the detection of B-mode polarization at of 40-200, 5 but it is unclear whether this signal is cosmological or Galactic in nature. These results have generated strong interest in complementary experiments and have highlighted the importance of multi-frequency observations for foreground subtraction. A measurement of B-modes in the CMB would constitute important evidence for inflation and a measurement of the energy scale at which inflation occured. The tensor-to-scalar ratios, r ≤ 0.1, being probed correspond to E ∼ 10 16 GeV, near grand-unified-theory (GUT) energy scales. The gravitational waves from inflation are our only probe of the physics at such enormous energies and at such early times, just 10 −35 seconds after the Big Bang. They would also provide the first firm evidence for the existence of quantum-gravitational effects. 6 Detecting primordial gravitational waves requires greater frequency coverage to definitively rule out Galactic foreground contamination, as well as a measurement of the B-mode signal over a wider range of angular scales to verify the full shape of the B-mode power spectrum.A number of experiments are searching for B-mode polarization. Notably, the Planck satellite has mapped the entire sky in nine frequency bands from 30 to 857 GHz, allowing measurement of CMB polarization over a broad range of angular scales with the ability to remove Galactic foreground contamination; however, it is yet to be seen whether Planck will have the ability to constrain this signal. In this paper we present the Cosmology Large Angular Scale Surveyor (CLASS), which is leading the effort to map the CMB polarization at large angular scales from the ground. CLASS will observe in four frequency bands centered on 38, 93, 148, and 217 GHz. CLASS is uniquely poised to measure inflationary gravitational waves through its ability to measure CMB polarization at the largest angular scales, a...
CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) over angular scales between 1 arcminute and tens of degrees using over 60,000 detectors and sampling frequencies between 27 and 270 GHz. SO will consist of a six-meteraperture telescope coupled to over 30,000 detectors and an array of half-meter aperture refractive cameras, coupled to an additional 30,000+ detectors. The unique combination of large and small apertures in a single CMB observatory will allow us to sample a wide range of angular scales over a common survey area while providing an important stepping stone towards the realization of CMB-Stage IV. CMB-Stage IV is a proposed project that will combine and expand on existing facilities in Chile and Antarctica to reach the 500,000 detectors required for CMB-Stage IV's science objectives. SO and CMB-Stage IV will measure fundamental cosmological parameters of our universe, constrain primordial fluctuations, find high redshift clusters via the Sunyaev-Zeldovich effect, constrain properties of neutrinos, and trace the density and velocity of the matter in the universe over cosmic time. The complex set of technical and science requirements for SO has led to innovative instrumentation solutions which we will discuss. For instance, the SO large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter and 2.4 m long. We will give an overview of the drivers for and designs of the SO telescopes and cameras as well as the current status of the project. We will also discuss the current status of CMB-Stage IV and important next steps in the project's development.
The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1° ≲ θ ≤ 90° with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 μ K cmb s for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.