Preliminary analysis for the S-CO2 Brayton power cycle development suggests small size and high operating speed of turbomachinery. The axial thrust due to the pressure differential generated in the turbomachinery is transferred to the bearing through the shaft. Angular contact ceramic bearings used for high speed operations are incapable of withstanding high axial loads. The current paper presents, theoretical and computational analysis of a 4-hole aerostatic thrust bearing for S-CO2 turbomachinery applications. CFD analysis is performed for different axial clearance gap between stationary and rotating discs of the thrust bearing. The computations have been performed for two different fluids — air and CO2. This computational domain of the flow regime splits into two regions: adiabatic flow through the orifice and isothermal flow in the clearance volume comprising the clearance gap. The influence of the following parameters such as, pressure distribution across thrust pad area, mass flow rate, load capacity and the local velocity in the gap on the stiffness of the bearing are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.