Climate change imprints on soil are projected primarily through the changes in soil moisture and surge in soil temperature and CO2 levels in response to climate change and is anticipated to have varying impacts on soil characteristics and processes that are instrumental in the restoration of soil fertility as well as productivity. Climate change encompasses a major concern of sharing its impact on the stability and functionality of soil microbiome and is characterized by one or more chief stability metrics encircling resistance, resilience, and functional redundancy. Nevertheless, the explorations over the past years have unveiled the potential of microbial interventions in the regeneration of soils or assurance of perked-up resilience to crops. The strategies involved therein encompass harnessing the native capability of soil microbes for carbon sequestration, phyto-stimulation, bio fertilization, rhizo-mediation, biocontrol of plant pathogens, enzyme-mediated breakdown, antibiosis, prompting of anti-oxidative defense mechanism, exudation of volatile organic compounds (VOCs) and induced systemic resistance (ISR) response in the host plant. However, the short storage and shelf-life of microbe-based formulations stay a significant constraint and rigorous efforts are necessary to appraise their additive impact on crop growth under changing climate scenarios.
Soil quality assessment serves as an index for appraising soil sustainability under varied soil management approaches. Our current investigation was oriented to establish a minimum data set (MDS) of soil quality indicators through the selection of apt scoring functions for each indicator, thus evaluating soil quality in the Himalayan foothills. The experiment was conducted during two consecutive years, viz. 2016 and 2017, and comprised of 13 treatments encompassing different combinations of chemical fertilizers, organic manure, and biofertilizers, viz. (i) the control, (ii) 20 kg P + PSB (Phosphorus solubilizing bacteria), (iii) 20 kg P + PSB + Rhizobium, (iv) 20 kg P + PSB + Rhizobium+ FYM, (v) 20 kg P + 0.5 kg Mo + PSB, (vi) 20 kg P + 0.5 kg Mo + PSB + Rhizobium, (vii) 20 kg P + 0.5 kg Mo + PSB + Rhizobium + FYM, (viii) 40 kg@ P + PSB, (ix) 40 kg P + PSB + Rhizobium, (x) 40 kg P + PSB + Rhizobium+ FYM, (xi) 40 kg P + 0.5 kg Mo + PSB, (xii) 40 kg P + 0.5 kg Mo + PSB + Rhizobium, and (xiii) 40 kg P + 0.5 kg Mo + PSB + Rhizobium + FYM. Evaluating the physical, chemical, and biological indicators, the integrated module of organic and inorganic fertilization reflected a significant improvement in soil characteristics such as the water holding capacity, available nitrogen, phosphorus, potassium, and molybdenum, different carbon fractions and soil biological characteristics encircling microbial biomass carbon (MBC), and total bacterial and fungal count. A principal component analysis (PCA) was executed for the reduction of multidimensional data ensued by scoring through the transformation of selected indicators. The soil quality index (SQI) established for different treatments exhibited a variation of 0.105 to 0.398, while the magnitude of share pertaining to key soil quality indicators for influencing soil quality index encircled the water holding capacity (WHC), the dehydrogenase activity (DHA), the total bacteria count, and the available P. The treatments that received an integrated nutrient package exhibited a higher SQI (T10—0.398; T13—0.372; T7—0.307) in comparison to the control treatment (T1—0.105). An enhanced soil quality index put forth for all organic treatments reflected an edge of any conjunctive package of reduced synthetic fertilizers with prime involvement of organic fertilizers over the sole application of inorganic fertilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.