Pancreatic Ductal Adenocarcinoma (PDAC) is the most lethal type of pancreatic cancer, late detection leading to its therapeutic failure. This study aims to determine the key regulatory genes and their impacts on the disease’s progression, helping the disease’s etiology, which is still mostly unknown. We leverage the landmark advantages of time-series gene expression data of this disease and thereby identified the key regulators that capture the characteristics of gene activity patterns in the cancer progression. We have identified the key gene modules and predicted the functions of top genes from a reconstructed gene association network (GAN). A variation of the partial correlation method is utilized to analyze the GAN, followed by a gene function prediction task. Moreover, we have identified regulators for each target gene by gene regulatory network inference using the dynamical GENIE3 (dynGENIE3) algorithm. The Dirichlet process Gaussian process mixture model and cubic spline regression model (splineTimeR) are employed to identify the key gene modules and differentially expressed genes, respectively. Our analysis demonstrates a panel of key regulators and gene modules that are crucial for PDAC disease progression.
Pancreatic Ductal Adenocarcinoma (PDAC) is the most lethal type of pancreatic cancer (PC), late detection of which leads to its therapeutic failure. This study aims to find out key regulatory genes and their impact on the progression of the disease helping the etiology of the disease which is still largely unknown. We leverage the landmark advantages of time-series gene expression data of this disease, and thereby the identified key regulators capture the characteristics of gene activity patterns in the progression of the cancer. We have identified the key modules and predicted gene functions of top genes from the compiled gene association network (GAN). Here, we have used the natural cubic spline regression model (splineTimeR) to identify differentially expressed genes (DEG) from the PDAC microarray time-series data downloaded from gene expression omnibus (GEO). First, we have identified key transcriptomic regulators (TR) and DNA binding transcription factors (DbTF). Subsequently, the Dirichlet process and Gaussian process (DPGP) mixture model is utilized to identify the key gene modules. A variation of the partial correlation method is utilized to analyze GAN, which is followed by a process of gene function prediction from the network. Finally, a panel of key genes related to PDAC is highlighted from each of the analyses performed.Please note: Abbreviations should be introduced at the first mention in the main text – no abbreviations lists. Suggested structure of main text (not enforced) is provided below.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.