IntroductionPropolis is a sticky material mixed by honeybees to utilize it in protecting their hives from infection by bacteria and fungi. The therapeutic properties of propolis are due to its chemical composition with bio-active compounds; therefore, researchers are interested in studying its chemical constituents and biological properties. The main objective of this study is to determine the chemical compositions, characteristics and relative concentrations of organic compounds in the extractable organic matter of propolis samples collected from four different areas in Ethiopia.ResultsThe propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC-MS).The results showed that the total extract yields ranged from 27.2% to 64.2% (46.7 ± 19.1%). The major compounds were triterpenoids (85.5 ± 15.0% of the total extracts, mainly α-, β-amyrins and amyryl acetates), n-alkanes (5.8 ± 7.5%), n-alkenes (6.2 ± 7.0%,), methyl n-alkanoates (0.4 ± 0.2%), and long chain wax esters (0.3 to 2.1%).ConclusionThe chemical compositions of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.
The burden of enteric pathogens in poultry is growing after the ban of antibiotic use in animal production. Organic acids gained attention as a possible alternative to antibiotics due to their antimicrobial activities, improved nutrient metabolism and performance. The current study was conducted to evaluate the effectiveness of organic acid blend on broilers cecal microbiota, histomorphometric measurements, and short-chain fatty acid production in Salmonella enterica serovar Typhimurium challenge model. Birds were divided into four treatments, including a negative control, positive control challenged with S. Typhimurium, group supplemented with an organic acid blend, and birds supplemented with organic acid blend and Salmonella challenged. Results illustrate significant differences in feed conversion ratios and production efficiency factor between treatment groups, however, the influence of organic acid supplement was marginal. Organic acid blend significantly increased cecal acetic and butyric acids concentrations when compared to unsupplemented groups and resulted in minor alterations of intestinal bacterial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.