Abstract-Nonlinear effects in single-crystal silicon microresonators are analyzed with the focus on mechanical nonlinearities. The bulk acoustic wave (BAW) resonators are shown to have orders-of-magnitude higher energy storage capability than flexural beam resonators. The bifurcation point for the silicon BAW resonators is measured and the maximum vibration amplitude is shown to approach the intrinsic material limit. The importance of nonlinearities in setting the limit for vibration energy storage is demonstrated in oscillator applications. The phase noise calculated for silicon microresonator-based oscillators is compared to the conventional macroscopic quartz-based oscillators, and it is shown that the higher energy density attainable with the silicon resonators can partially compensate for the small microresonator size. Scaling law for microresonator phase noise is developed.[1246]
This paper is a comprehensive review of almost twenty years of research on nuclear magnetic ordering, first in copper and later in silver and rhodium metals. The basic principles of nuclear magnetism and the measurement of positive and negative spin temperatures are discussed first. Cascade nuclear refrigeration techniques, susceptibility and nuclear-magnetic-resonance (NMR) measurements, and arrangements for neutron-diffraction experiments at nanokelvin and picokelvin temperatures are described next. Comprehensive magnetic-susceptibility and neutron-diffraction measurements on copper, which led to the discovery of at least three antiferromagnetic phases, one displaying the novel (0 2 3 2 3 ) spin structure and the other two showing the type-I order of the fcc system, are then described in detail. NMR data on silver, at TϾ0 and TϽ0, are presented next leading to the observation that silver orders antiferromagnetically at positive spin temperatures and ferromagnetically at negative spin temperatures. The authors discuss recent neutron-diffraction measurements that show that the antiferromagnetic structure at TϾ0 is in a single-k type-I state. NMR data on rhodium at TϾ0 and TϽ0 are also described. Results obtained on Tl, Sc, AuIn 2 , and metallic Pr compounds and on insulators like CaF 2 are then discussed briefly. The paper is concluded by an extensive theoretical section. Calculations of conduction-electron mediated exchange interactions are described, and the mean-field theory of nuclear magnetic ordering is presented. The role of thermal and quantum fluctuations is then discussed, particularly in the selection of the antiferromagnetic ground state. Finally, theoretically calculated magnetic phase diagrams and ordered spin structures of copper and silver are presented in detail and compared with experimental results. The overall agreement is good, affirming the value of nuclear magnets in Cu and Ag as realizations of simple physical models. [S0034-6861(97)00301-2] ogy,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.