BACKGROUND: Molecular oncology testing is important for patient management, and requests for the molecular analysis of cytology specimens are increasingly being made. Formalin-fixed, paraffin-embedded (FFPE) cell blocks of such specimens have been routinely used for molecular diagnosis. However, the inability to assess cellularity before cell block preparation is a pitfall of their use. In this study, various cytologic preparations were tested with several molecular test platforms, and the results were compared with paired FFPE tissue. METHODS: Seventy-seven cytology cases, including fine-needle aspiration smears, touch preparations, and SurePath thin-layer preparations, were selected from the archives.Areas of interest were removed from the slide with a matrix capture solution. DNA extracted from the cells was evaluated by mutation analysis for BRAF, epidermal growth factor receptor (EGFR), RAS, and a 50-gene panel with various testing platforms (single-nucleotide primer extension assay, Sanger sequencing, and next-generation sequencing). Thirty-eight tumors with available FFPE tissue were tested in parallel. RESULTS: The average DNA concentration was 299 ng/mL for the cytology specimens and 171 ng/mg for the paired FFPE tissue. Point mutations and large deletions were detected in BRAF, KRAS, NRAS, HRAS, and EGFR genes. In comparison with FFPE tissue, 5-to 8-fold less input DNA was needed when cytology preparations were used. The concordance between cytology specimens and FFPE tissue was 100%. CON-CLUSIONS: Cytologic preparations were found to be a reliable source for molecular oncology testing. DNA derived from cytology specimens performed well on multiple platforms, and 100% concordance was observed between cytology specimens and FFPE tissue. Cancer (Cancer Cytopathol) 2015;123:30-9.
Primary aneurysmal bone cyst (ABC) is a neoplastic process due to recurrent translocations involving the USP6 gene. By fluorescence in situ hybridization, up to 69% of primary ABCs harbored USP6 translocations; no USP6 translocation was found in secondary ABC or giant cell tumor of bone (GCT). GCT can recur locally, metastasize to the lungs in some cases, and rarely undergo malignant transformation. Differentiating primary ABC from its mimics is important for treatment and prognosis. We evaluated USP6 fusion and expression in 13 cases of primary and 1 case of secondary ABC, and 9 cases of GCT using nucleic acid extracted from formalin-fixed, paraffin-embedded tissue and a next generation sequencing (NGS)-based assay. USP6 fusions including 7 novel fusions and USP6 transcripts were identified in all 13 primary ABCs. Nine cases with strong evidence of fusions showed high levels of USP6 transcripts by reverse transcription-PCR (RT-PCR). The remaining four had no detectable USP6 expression by a first-round of RT-PCR but the presence of USP6 transcripts was identified by a second-round, nested PCR. The major fusions were confirmed by RT-PCR followed by Sanger sequencing. No USP6 fusion or transcript was detected in any of the GCTs or the case of secondary ABC by NGS or by two rounds of PCR. All USP6 translocations resulted in fusion of the entire USP6 coding sequence with promoters of the fusion gene leading to upregulation of USP6 transcription, which is likely the underlying mechanism for ABC oncogenesis. © 2016 Wiley Periodicals, Inc.
BackgroundTransport protein particle (TRAPP) is a supramolecular protein complex that functions in localizing proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in muscle disease by virtue of homozygous and compound heterozygous deleterious mutations being identified in individuals with limb girdle muscular dystrophy and congenital muscular dystrophy. It remains unclear how this protein leads to muscle disease. Furthermore, a role for this protein, or any other membrane trafficking protein, in the etiology of the dystroglycanopathy group of muscular dystrophies has yet to be found. Here, using a multidisciplinary approach including genetics, immunofluorescence, western blotting, and live cell analysis, we implicate both TRAPPC11 and another membrane trafficking protein, GOSR2, in α-dystroglycan hypoglycosylation.Case presentationSubject 1 presented with severe epileptic episodes and subsequent developmental deterioration. Upon clinical evaluation she was found to have brain, eye, and liver abnormalities. Her serum aminotransferases and creatine kinase were abnormally high. Subjects 2 and 3 are siblings from a family unrelated to subject 1. Both siblings displayed hypotonia, muscle weakness, low muscle bulk, and elevated creatine kinase levels. Subject 3 also developed a seizure disorder. Muscle biopsies from subjects 1 and 3 were severely dystrophic with abnormal immunofluorescence and western blotting indicative of α-dystroglycan hypoglycosylation. Compound heterozygous mutations in TRAPPC11 were identified in subject 1: c.851A>C and c.965+5G>T. Cellular biological analyses on fibroblasts confirmed abnormal membrane trafficking. Subject 3 was found to have compound heterozygous mutations in GOSR2: c.430G>T and c.2T>G. Cellular biological analyses on fibroblasts from subject 3 using two different model cargo proteins did not reveal defects in protein transport. No mutations were found in any of the genes currently known to cause dystroglycanopathy in either individual.ConclusionRecessive mutations in TRAPPC11 and GOSR2 are associated with congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. This is the first report linking membrane trafficking proteins to dystroglycanopathy and suggests that these genes should be considered in the diagnostic evaluation of patients with congenital muscular dystrophy and dystroglycanopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.