Balloch, AS, Meghji, M, Newton, RU, Hart, NH, Weber, JA, Ahmad, I, and Habibi, D. Assessment of a novel algorithm to determine change-of-direction angles while running using inertial sensors. J Strength Cond Res 34(1): 134–144, 2020—The ability to detect and quantify change-of-direction (COD) movement may offer a unique approach to load-monitoring practice. Validity and reliability of a novel algorithm to calculate COD angles for predetermined COD movements ranging from 45 to 180° in left and right directions was assessed. Five recreationally active men (age: 29.0 ± 0.5 years; height: 181.0 ± 5.6 cm; and body mass: 79.4 ± 5.3 kg) ran 5 consecutive predetermined COD trials each, at 4 different angles (45, 90, 135, and 180°), in each direction. Participants were fitted with a commercially available microtechnology unit where inertial sensor data were extracted and processed using a novel algorithm designed to calculate precise COD angles for direct comparison with a high-speed video (remotely piloted, position-locked aircraft) criterion measure. Validity was assessed using Bland-Altman 95% limits of agreement and mean bias. Reliability was assessed using typical error (expressed as a coefficient of variation [CV]). Concurrent validity was present for most angles. Left: (45° = 43.8 ± 2.0°; 90° = 88.1 ± 2.0°; 135° = 136.3 ± 2.1°; and 180° = 181.8 ± 2.5°) and Right: (45° = 46.3 ± 1.6°; 90° = 91.9 ± 2.2°; 135° = 133.4 ± 2.0°; 180° = 179.2 ± 5.9°). All angles displayed excellent reliability (CV < 5%) while greater mean bias (3.6 ± 5.1°, p < 0.001), weaker limits of agreement, and reduced precision were evident for 180° trials when compared with all other angles. High-level accuracy and reliability when detecting COD angles further advocates the use of inertial sensors to quantify sports-specific movement patterns.
This study examined the suitability of sigmoidal (SIG) and exponential (EXP) functions for modeling HR kinetics at the onset of a 5‐min low‐intensity cycling ergometer exercise test (5MT). The effects of training status, absolute and relative workloads, and high versus low workloads on the accuracy and reliability of these functions were also examined. Untrained participants (UT abs; n = 13) performed 5MTs at 100W. One group of trained participants (n = 10) also performed 5MTs at 100W (ET abs). Another group of trained participants (n = 9) performed 5MTs at 45% and 60% V˙normalO2 max (ET 45 and ET 60, respectively). SIG and EXP functions were fitted to HR data from 5MTs. A 30‐s lead‐in time was included when fitting SIG functions. Functions were compared using the standard error of the regression (SER), and test‐retest reliability of curve parameters. SER for EXP functions was significantly lower than for SIG functions across all groups. When residuals from the 30‐s lead‐in time were omitted, EXP functions only outperformed SIG functions in ET 60 (EXP, 2.7 ± 1.2 beats·min−1; SIG, 3.1 ± 1.1 beats·min−1: P < 0.05). Goodness of fit and test–retest reliability of curve parameters were best in ET 60 and comparatively poor in UT abs. Overall, goodness of fit and test–retest reliability of curve parameters favored functions fitted to 5MTs performed by trained participants at a high and relative workload, while functions fitted to data from untrained participants exercising at a low and absolute workload were less accurate and reliable.
Wheelchair basketball (WCB) is one of the most popular sports for athletes with disabilities. Athletes with a wide range of disabilities compete in the sport, making WCB highly inclusive while presenting unique challenges for various aspects of performance support. This review aims to provide an overview of the existing literature on physical characteristics and competition demands of elite WCB athletes to provide practitioners with the best physical preparation practices for improving performance. Many physical characteristics and capacities have been reported to improve performance and are useful for setting performance benchmarks. Assessment of these capacities in WCB athletes requires special considerations due to the impacts of individual disabilities and interactions between the athlete and the wheelchair. Profiling WCB athletes also requires understanding the competitive demands that cannot be extrapolated from nondisabled basketball. To track game movements, this review describes previous studies tracking game movements with various tracking devices, and recent studies have identified inertial sensors as an accurate and practical option. Athletes' internal responses to game demands vary based on disability, particularly spinal cord injuries, so special considerations for internal load monitoring include implementing individualized monitoring strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.