This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A first-order link between local separation of supersonic turbulent boundary layer flow and structural deformation is established. First, mathematical analysis of the Kármán-Pohlhausen momentum integral equation is carried out with the assumption of spatially varying surface topology in order to identify fluid-centric representations of structural deformation. Next, a data-driven approach is used to identify the dominant fluid-centric parameters.This ultimately yields a simple linear correlation between local skin friction coefficient and surface curvature, which is the unifying parameter relating deformation and separation. This link represents a key step towards deep understanding on the nuanced interplay between turbulent boundary layers and structural deformation; and significantly improves fundamental understanding of fluid-structure interaction problems with prominent turbulent boundary layer dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.