Objective:To determine the sensitivity of T2*weighted gradient-echo (T2*GRE) and inversion recovery turbo-field-echo (TFE) sequences for cortical multiple sclerosis lesions at 7 T. Design, Setting, and Participants: Autopsied brain tissue from individuals with multiple sclerosis was scanned with 3-dimensional T2*GRE and 3-dimensional inversion recovery white matter-attenuated TFE sequences at 7 T. Cortical lesions visible with either sequence were scored for each anatomical lesion type. Imaged brain tissue was then processed for immunohistochemical analysis, and cortical lesions were identified by labeling with antibody against myelin basic protein and CD68 for microglia. Magnetic resonance images were matched with corresponding histological sections and scored retrospectively to determine the sensitivity for each cortical lesion type.Main Outcome Measure: Cortical lesion detection by 3-dimensional T2*GRE and white matter-attenuated TFE sequences. Results:The 3-dimensional T2*GRE and white matterattenuated TFE sequences retrospectively detected 93% and 82% of all cortical lesions, respectively (with varying sensitivities for different lesion types). Lesion visibility was primarily determined by size as all undetected lesions were smaller than 1.1 mm at their smallest diameter. The T2*GRE images showed hypointense rings in some cortical lesions that corresponded with increased density of activated microglia.Conclusions: Three-dimensional T2*GRE and white matter-attenuated TFE sequences at a 7-T field strength detect most cortical lesions in postmortem multiple sclerosis tissue. This study indicates the potential of T2*GRE and white matter-attenuated TFE sequences in ultrahigh-field magnetic resonance imaging for cortical lesion detection in patients with multiple sclerosis.
MRI phase imaging in multiple sclerosis (MS) patients and in autopsy tissue have demonstrated the presence of iron depositions in white matter lesions.The accumulation of iron in some but not all lesions suggests a specific, potentially disease-relevant process, however; its pathophysiological significance remains unknown.Here, we explore the role of lesional iron in multiple sclerosis using multiple approaches: immunohistochemical examination of autoptic MS tissue, an in vitro model of iron-uptake in human cultured macrophages and ultra-highfield phase imaging of highly active and of secondary progressive MS patients.Using Perls' stain and immunohistochemistry, iron was detected in MS tissue sections predominantly in non-phagocytosing macrophages/microglia at the edge of established, demyelinated lesions. Moreover, iron-containing macrophages but not myelin-laden macrophages expressed markers of proinflammatory (M1) polarization.Similarly, in human macrophage cultures, iron was preferentially taken up by non-phagocytosing, M1-polarized macrophages and induced M1 (super) polarization. Iron uptake was minimal in myelin-laden macrophages and active myelin phagocytosis led to depletion of intracellular iron.Finally, we demonstrated in MS patients using GRE phase imaging with ultra-highfield MRI that phase hypointense lesions were significantly more prevalent in patients with active relapsing than with secondary progressive MS.Taken together, our data provide a basis to interpret iron-sensitive GRE phase imaging in MS patients: iron is present in non-phagocytosing, M1-polarized microglia/macrophages at the rim of chronic active white matter demyelinating lesions. Phase imaging may therefore visualize specific, chronic proinflammatory activity in established MS lesions and thus provide important clinical information on disease status and treatment efficacy in MS patients.
ObjectiveThis double-blind, placebo-controlled, dose-finding phase IIb study evaluated the efficacy and safety of ponesimod, an oral selective S1P1 receptor modulator, for the treatment of patients with relapsing–remitting multiple sclerosis (RRMS).Methods464 patients were randomised to receive once-daily oral ponesimod 10, 20 or 40 mg, or placebo for 24 weeks. The primary endpoint was the cumulative number of new T1 gadolinium-enhanced (T1 Gd+) lesions per patient recorded every 4 weeks from weeks 12 to 24 after study drug initiation. Secondary endpoints were the annualised confirmed relapse rate (ARR) and time to first confirmed relapse. Safety and tolerability were also evaluated.ResultsThe mean cumulative number of new T1 Gd+ lesions at weeks 12–24 was significantly lower in the ponesimod 10 mg (3.5; rate ratio (RR) 0.57; p=0.0318), 20 mg (1.1; RR 0.17; p<0.0001) and 40 mg (1.4; RR 0.23; p<0.0001) groups compared with placebo (6.2). The mean ARR was lower with 40 mg ponesimod versus placebo, with a maximum reduction of 52% (0.25 vs 0.53; p=0.0363). The time to first confirmed relapse was increased with ponesimod compared with placebo. The proportion of patients with ≥1 treatment-emergent adverse events (AEs) was similar across ponesimod groups and the placebo group. Frequently reported AEs with higher incidence in the three ponesimod groups compared with placebo were anxiety, dizziness, dyspnoea, increased alanine aminotransferase, influenza, insomnia and peripheral oedema.ConclusionsOnce-daily treatment with ponesimod 10, 20 or 40 mg significantly reduced the number of new T1 Gd+ lesions and showed a beneficial effect on clinical endpoints. Ponesimod was generally well tolerated, and further investigation of ponesimod for the treatment of RRMS is under consideration.Trial registration numberNCT01006265.
IntroductionLimited data are available on the real-world effectiveness of newer oral disease-modifying therapies (DMTs) in multiple sclerosis. The purpose of this study was to retrospectively compare the real-world effectiveness of dimethyl fumarate (DMF), fingolimod, teriflunomide, and injectable DMTs in routine clinical practice based on US claims data.MethodsPatients newly-initiating DMF, interferon beta (IFNβ), glatiramer acetate (GA), teriflunomide, or fingolimod in 2013 were identified in the Truven MarketScan Commercial Claims Databases (N = 6372). Relapse episodes were identified based on a published claim-based algorithm and used to determine the annualized relapse rate (ARR) for the year before and after initiating therapy. Poisson and negative binomial regression was used to determine the adjusted incidence rate ratio (IRR) for each therapy relative to DMF.ResultsSignificant ARR reductions in the year after initiating therapy were reported for DMF and fingolimod (P < 0.0001). Compared with DMF, the adjusted IRR (95% CI) for relapse in the year after initiating therapy was 1.27 (1.10–1.46) for IFNβ, 1.34 (1.17–1.53) for GA, 1.23 (1.05–1.45) for teriflunomide, and 1.03 (0.88–1.21) for fingolimod. Results were consistent across subgroup and sensitivity analyses.ConclusionThese real-world data suggest DMF and fingolimod have similar effectiveness and demonstrate superior effectiveness to IFNβ, GA, and teriflunomide. Funding: Biogen, Cambridge, MA, USA.Electronic supplementary materialThe online version of this article (doi:10.1007/s40120-017-0064-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.