The continuous assembly of polymers (CAP) is used to fabricate tailored nanocoatings on a wide variety of substrates. Ring‐opening metathesis polymerization (ROMP) is used to mediate the CAP process (CAPROMP) to assemble specifically designed macromolecules into nanoengineered crosslinked films. Different films composed of single or multiple macromolecules are used to tune the surface wetting characteristics on various planar substrates, including porous substrates such as filter paper and cotton, and non‐porous subtrates such as aluminium foil and glass. By judicious selection of the macromolecules, these substrates, which are hydrophilic in nature, can be rendered (super)hydrophobic. The robustness of the ROMP catalysts and the reinitiation ability of the CAPROMP approach allow the production of layered multicomponent amphiphilic films with on‐demand switchable wettability. Such functional nanocoatings can be potentially applied as self‐cleaning surfaces, as waterproof woven fabrics, and for the next generation of microelectronic devices.
F. Caruso, G. G. Qiao, and co‐workers recently developed an efficient technique, termed the continuous assembly of polymers (CAP), to build nanoscale cross‐linked films on surfaces via a simple coating procedure using pre‐formed polymers. , the CAP approach allows ondemand switching of surface properties (between superhydrophobic and hydrophilic surfaces) by facile alternate dipping in different polymer solutions, forming multilayered amphiphilic films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.