Background: A fast, proton echo-planar spectroscopic imaging (PEPSI) technique, capable of simultaneously measuring metabolites from multiple brain regions, was used to investigate the anatomical distribution and magnitude of brain lactate responses to intravenous lactate infusion among subjects with panic disorder and control subjects.
We performed a double-blind study to measure the clinical and subclinical effects of an alternative medicine magnetic device on disease activity in multiple sclerosis (MS). The MS patients were exposed to a magnetic pulsing device (Enermed) where the frequency of the magnetic pulse was in the 4-13 Hz range (50-100 milliGauss). A total of 30 MS patients wore the device on preselected sites between 10 and 24 hours a day for 2 months. Half of the patients (15) randomly received an Enermed device that was magnetically inactive and the other half received an active device. Each MS patient received a set of tests to evaluate MS disease status before and after wearing the Enermed device. The tests included (1) a clinical rating (Kurtzke, EDSS), (2) patient-reported performance scales, and (3) quantitative electroencephalography (QEEG) during a language task. Although there was no significant change between pretreatment and posttreatment in the EDSS scale, there was a significant improvement in the performance scale (PS) combined rating for bladder control, cognitive function, fatigue level, mobility, spasticity, and vision (active group -3.83 +/- 1.08, p < 0.005; placebo group -0.17 +/- 1.07, change in PS scale). There was also a significant change between pretreatment and posttreatment in alpha EEG magnitude during the language task recorded at various electrode sites on the left side. In this double-blind, placebo-controlled study, we have demonstrated a statistically significant effect of the Enermed magnetic pulsing device on patient performance scales and on alpha EEG magnitude during a language task.
A clear understanding of choline metabolism is important in our goal to modify demyelination and remyelination in multiple sclerosis. To develop a technique capable of measuring metabolic changes in the brain, we have studied the incorporation of a phosphonium analogue of choline (P-choline) in tissue extracts of rats. After feeding adult rats a choline-deficient diet supplemented with P-choline, the analogue was not detectable by in vivo volume-localized 1H spectroscopy. However, in vitro 31P measurements of brain extracts revealed an 11% incorporation of P-choline into phosphatidylcholine. We report that P-choline incorporates preferentially into the lipid pool over the lipid precursor pool and we provide evidence that the choline peak resolved by in vivo 1H spectroscopy is only composed of small molecular weight choline-containing compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.