Concomitant traumatic brain injury (TBI) and long bone fracture are commonly observed in multitrauma and polytrauma. Despite clinical observations of enhanced bone healing in patients with TBI, the relationship between TBI and fracture healing remains poorly understood, with clinical data limited by the presence of several confounding variables. Here we developed a novel trauma model featuring closed-skull weight-drop TBI and concomitant tibial fracture in order to investigate the effect of TBI on fracture healing. Male mice were assigned into Fracture + Sham TBI (FX) or Fracture + TBI (MULTI) groups and sacrificed at 21 and 35 days post-injury for analysis of healing fractures by micro computed tomography (μCT) and histomorphometry. μCT analysis revealed calluses from MULTI mice had a greater bone and total tissue volume, and displayed higher mean polar moment of inertia when compared to calluses from FX mice at 21 days post-injury. Histomorphometric results demonstrated an increased amount of trabecular bone in MULTI calluses at 21 days post-injury. These findings indicate that closed head TBI results in calluses that are larger in size and have an increased bone volume, which is consistent with the notion that TBI induces the formation of a more robust callus.
Cells of early, fibrous callus in bone fractures possess much alpha smooth muscle actin. This callus contracts and relaxes; however, active and passive components of its force production have yet to be defined. We aimed to establish whether passive viscoelastic properties of early soft fracture callus are smooth muscle-like in nature. Under anesthesia one rib was fractured in rats and calluses removed 7 days later for analysis. Urinary bladder detrusor muscle and Achilles tendon were also resected and analyzed. Force production in these tissues was measured using a force transducer when preparations were immersed in calcium-free Krebs-Henseleit solution (pH 7.4, 228C). Viscoelastic responses were measured in each preparation in response to 50 mN increases and decreases in force after achieving basal tissue tension by preconditioning. Callus, bladder, and tendon all displayed varying, reproducible degrees of stress relaxation (SR) and reverse stress relaxation (RSR) (n ¼ 7 for all groups). Hysteresis was observed in callus, with the first SR response significantly larger than that produced in subsequent stretches (p < 0.05). Callus SR responses were greater than tendon (p < 0.001) but less than bladder (p < 0.001). Callus RSR responses were greater than tendon (p < 0.001), but no significant difference was seen between RSR of callus and bladder. We concluded that early, soft callus displayed significant SR and RSR phenomena similar to smooth muscle tissue, and SR and RSR may be important in maintenance of static tension in early callus by promoting osteogenesis and fracture healing. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.