Abstract-This paper presents a novel approach to estimating the continuous six degree of freedom (6-DoF) pose (3D translation and rotation) of an object from a single RGB image. The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model. Unlike prior work, we are agnostic to whether the object is textured or textureless, as the convnet learns the optimal representation from the available training image data. Furthermore, the approach can be applied to instance-and class-based pose recovery. Empirically, we show that the proposed approach can accurately recover the 6-DoF object pose for both instanceand class-based scenarios with a cluttered background. For class-based object pose estimation, state-of-the-art accuracy is shown on the large-scale PASCAL3D+ dataset.
Recently, neural-symbolic architectures have achieved success on commonsense reasoning through effectively encoding relational structures retrieved from external knowledge graphs (KGs) and obtained state-of-the-art results in tasks such as (commonsense) question answering and natural language inference. However, these methods rely on quality and contextualized knowledge structures (i.e., fact triples) that are retrieved at the pre-processing stage but overlook challenges caused by incompleteness of a KG, limited expressiveness of its relations, and retrieved facts irrelevant to the reasoning context. In this paper, we present a novel neural-symbolic model, named Hybrid Graph Network (HGN), which jointly generates feature representations for new triples (as a complement to existing edges in the KG), determines the relevance of the triples to the reasoning context, and learns graph module parameters for encoding the relational information. Our model learns a compact graph structure (comprising both extracted and generated edges) through filtering edges that are unhelpful to the reasoning process. We show marked improvement on three commonsense reasoning benchmarks and demonstrate the superiority of the learned graph structures with user studies. 1
Recently, knowledge graph (KG) augmented models have achieved noteworthy success on various commonsense reasoning tasks. However, KG edge (fact) sparsity and noisy edge extraction/generation often hinder models from obtaining useful knowledge to reason over. To address these issues, we propose a new KG-augmented model: Hybrid Graph Network (HGN). Unlike prior methods, HGN learns to jointly contextualize extracted and generated knowledge by reasoning over both within a unified graph structure. Given the task input context and an extracted KG subgraph, HGN is trained to generate embeddings for the subgraph's missing edges to form a "hybrid" graph, then reason over the hybrid graph while filtering out context-irrelevant edges. We demonstrate HGN's effectiveness through considerable performance gains across four commonsense reasoning benchmarks, plus a user study on edge validness and helpfulness. 1
Augmenting pre-trained language models with knowledge graphs (KGs) has achieved success on various commonsense reasoning tasks. Although some works have attempted to explain the behavior of such KG-augmented models by indicating which KG inputs are salient (i.e., important for the model's prediction), it is not always clear how these explanations should be used to make the model better. In this paper, we explore whether KG explanations can be used as supervision for teaching these KG-augmented models how to filter out unhelpful KG information. To this end, we propose SALKG, a simple framework for learning from KG explanations of both coarse (Is the KG salient?) and fine (Which parts of the KG are salient?) granularity. Given the explanations generated from a task's training set, SALKG trains KG-augmented models to solve the task by focusing on KG information highlighted by the explanations as salient. Across two popular commonsense QA benchmarks and three KG-augmented models, we find that SALKG's training process can consistently improve model performance. 1 * Equal contribution. † Work done while TG interned remotely at USC. 1 Code will be released at github.com/INK-USC/SalKG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.