In this paper, we report the use of additive manufacturing methods to fabricate a high aspect ratio, low noise amplifier (LNA) for a handheld active sensor device operating at up to 1 GHz. The new form factor LNA incorporates a modification of a square-shaped commercial off-the-shelf (COTS) LNA into a 5:1 aspect ratio device without a loss in RF performance. For rapid prototyping, we employ both subtractive and additive manufacturing technologies, such as milling, extrusion-based syringe printing, and aerosol jet printing techniques to fabricate both small form factor and high aspect ratio devices. The 5:1 aspect ratio LNA demonstrated a 20% smaller form factor, a gain of 25 dB, and an NF less than 3 dB over an operating frequency range up to 1 GHz, comparable to the COTS LNA. Design, simulation, and experimental results are given to highlight the advantages of 3D printed hybrid electronic technology over the conventional PCB fabrication method for rapid prototyping of RF electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.