Self-assembly by means of coordinative bond formation has opened up opportunities for the high-yield synthesis of molecules with complex topologies. However, the preparation of purely covalent molecular architectures in aqueous media has remained a challenging task. Here, we present the preparation of a three-dimensional catenane through a self-assembly process that relies on the formation of dynamic hydrazone linkages in an acidic aqueous medium. The quantitative synthesis process and the mechanically interlocked structure of the resulting catenane were established by NMR spectroscopy, mass spectrometry, X-ray crystallography and HPLC studies. In addition, the labile hydrazone linkages of the individual [2]catenane components may be 'locked' by increasing the pH of the solution, yielding a relatively kinetically stable molecule. The present study thus details a simple approach to the creation and control of complex molecular architectures under reaction conditions that mimic biological milieux.
Porphyrins have been used frequently to construct supramolecular assemblies. In contrast, noncovalent ensembles derived from expanded porphyrins, larger congeners of naturally occurring tetrapyrrole macrocycles, are all but unknown. Here we report a series of expanded porphyrin-anion supramolecular assemblies. These systems display unique environmentally responsive behavior. Addition of polar organic solvents or common anions to the ensembles leads to either a visible color change, a change in the fluorescence emission features, or differences in solubility. The actual response, which could be followed easily by the naked eye, was found to depend on the specifics of the assembly, as well as the choice of analyte. Using the ensembles of this study, it proved possible to differentiate between common solvents, such as diethyl ether, THF, ethyl acetate, acetone, alcohol, acetonitrile, DMF, and DMSO, identify complex solvent systems, as well as distinguish between the fluoride, chloride, bromide, nitrate, and sulfate anions.
Confused yet still diatropic: A new type of porphyrin isomer is reported where a pyrrole nitrogen is connected to one of the meso‐bridges. This system retains porphyrin‐like characteristics and reacts with nickel(II) acetate to generate a stable organometallic complex.
Neo-confused porphyrins represent a unique family of porphyrin isomers that retain overall aromatic characteristics by virtue of a 17-atom 18π electron delocalization pathway. These porphyrin analogues have a pyrrolic subunit linked in a 1,3-fashion so that a nitrogen atom is directly connected to a meso-bridging carbon. Pyrrole-3-carbaldehydes were shown to react with sodium hydride and 5-acetoxymethylpyrrole-2-carbaldehydes in DMF to give the crucial neo-confused dipyrrolic dialdehyde intermediates. MacDonald "2 + 2" condensation of the dialdehydes with a dipyrrylmethane afforded a dihydroporphyrinoid, and subsequent oxidation with 0.2% aqueous ferric chloride generated a series of fully conjugated neo-confused porphyrins. Unusual dihydroporphyrin byproducts were also identified. Reaction of neo-confused porphyrins with nickel(II) or palladium(II) acetate in refluxing acetonitrile gave excellent yields of the corresponding organometallic derivatives. Proton NMR spectroscopy demonstrates that the diatropic character of this system is diminished compared to regular porphyrins, although neo-confused porphyrins retain porphyrin-like UV-vis spectra. Protonation led to the sequential formation of mono- and dicationic species. Proton NMR spectra for the dications showed the presence of enhanced diamagnetic ring currents.
A "2 + 2" strategy for synthesizing adj-dicarbaporphyrinoid systems has been developed. In a model study, an azulenylmethylpyrrole dialdehyde was condensed with a dipyrrylmethane in the presence of HCl, followed by oxidation with ferric chloride, to give a modest yield of an azuliporphyrin. Fulvene aldehydes were prepared by reacting an indene-derived enamine with azulene aldehydes in the presence of Bu(2)BOTf, and azulene dialdehydes similarly reacted to give fulvene dialdehydes. The dialdehydes were condensed with dipyrrylmethanes in TFA/dichloromethane to afford good to excellent yields of dicarbaporphyrinoids with adjacent indene and azulene subunits. These 22-carbaazuliporphyrins exhibited significant diatropic character, and this property was magnified upon protonation. These characteristics are attributed to tropylium-containing resonance contributors that possess 18π electron delocalization pathways. Protonation studies demonstrated that C-protonation readily occurred at the interior indene carbon, but deuterium exchange also occurred at the internal azulene CH as well as at the meso-positions with TFA-d. Reaction of a carbaazuliporphyrin with silver(I) acetate in methanol or ethanol solutions also gave unusual nonaromatic dialkoxy derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.