We reduce a case of the hidden subgroup problem (HSP) in $\SL$, $\PSL$, and $\PGL$, three related families of finite groups of Lie type, to efficiently solvable HSPs in the affine group $\AGL$. These groups act on projective space in an ``almost'' 3-transitive way, and we use this fact in each group to distinguish conjugates of its Borel (upper triangular) subgroup, which is also the stabilizer subgroup of an element of projective space. Our observation is mainly group-theoretic, and as such breaks little new ground in quantum algorithms. Nonetheless, these appear to be the first positive results on the HSP in finite simple groups such as $\PSL$.
Measurements are a primitive for characterizing quantum systems. Reducing the time taken to perform a measurement may be beneficial in many areas of quantum information processing. We show that permuting the eigenvalues of the state matrix in the logical basis, using open-loop control, provides an O(n) reduction in the measurement time, where n is the number of qubits in the register. This reduction is of the same order as the (previously introduced) locally optimal feedback protocol. The advantage of the open-loop protocol is that it is far less difficult experimentally. Because the control commutes with the measured observable at all times, our rapid measurement protocol could be used for characterizing a quantum system, by state or process tomography, or to implement measurement-based quantum error correction.
We reduce a case of the hidden subgroup problem (HSP) in SL(2; q), PSL(2; q), and PGL(2; q), three related families of finite groups of Lie type, to efficiently solvable HSPs in the affine group AGL(1; q). These groups act on projective space in an "almost" 3-transitive way, and we use this fact in each group to distinguish conjugates of its Borel (upper triangular) subgroup, which is also the stabilizer subgroup of an element of projective space. Our observation is mainly group-theoretic, and as such breaks little new ground in quantum algorithms. Nonetheless, these appear to be the first positive results on the HSP in finite simple groups such as PSL(2; q).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.