Seven-day intake of anthocyanins from New Zealand blackcurrant (NZBC) extract increased cardiac output and femoral artery diameter during a sustained submaximal isometric contraction. It is not known if there are intake duration effects by NZBC extract on the isometric contraction-induced cardiovascular responses. In a repeated measures design, male participants (n=19, age: 26±4 years) performed a 120-second submaximal (30%) isometric contraction of the knee extensors at baseline and following 1, 4 and 7-days intake of 600 mg•day -1 NZBC extract. During the 120second submaximal isometric contraction, femoral artery diameter and cardiovascular Accepted version, 24 June 2021, Journal of Dietary Supplements responses were measured with ultrasound and beat-to-beat hemodynamic monitoring.Femoral artery was larger following 4-days (mean difference=0.046, 95% CI [0.012, 0.080 cm], p=0.005) and 7-days (mean difference=0.078, 95% CI [0.034, 0.123 cm], p<0.001) in comparison to baseline with no increase with 1-day intake. Systolic and diastolic blood pressure, heart rate and total peripheral resistance were not changed by NZBC extract at 1, 4 and 7-days intake. However, mean arterial pressure, stroke volume, cardiac output and total peripheral resistance were changed at time points during the isometric contraction following 7-days intake in comparison to 1-day intake of NZBC extract (p<0.05). Alterations in femoral artery diameter and some cardiovascular responses during a submaximal sustained isometric contraction of the knee extensors are affected by the intake duration of New Zealand blackcurrant extract, with no effects by 1-day intake. Our observations suggest that the bioavailability of blackcurrant anthocyanins and anthocyanin-derived metabolites is required for days to alter the mechanisms for isometric-contraction induced cardiovascular responses.
Intake of anthocyanin-rich New Zealand blackcurrant (NZBC) can alter physiological responses that enhance exercise performance. In two studies, we examined the effects of NZBC extract on force steadiness during a sustained submaximal isometric contraction of the quadriceps femoris muscle. With repeated measures designs, male participants in study one (n = 13) and study two (n = 19) performed a 120 s submaximal (30%) isometric contraction of the quadriceps femoris muscle following a 7-day intake of NZBC extract and placebo (study one) and following 0 (control), 1-, 4- and 7-day intake of NZBC extract (study two). Participants for both studies were different. In study one, NZBC extract enhanced isometric force steadiness during the 120 s contraction (placebo: 6.58 ± 2.24%, NZBC extract: 6.05 ± 2.24%, p = 0.003), with differences in the third (60–89 s) and fourth quartile (90–120 s) of the contraction. In study two, isometric force steadiness was not changed following 1 and 4 days but was enhanced following 7-day intake of NZBC extract in comparison to control. In study two, the enhanced isometric force steadiness following 7-day intake did occur in the second (30–59 s), third (60–89 s) and fourth (90–120 s) quartiles. Daily supplementation of anthocyanin-rich NZBC extract can enhance force steadiness of the quadriceps femoris muscle during a sustained submaximal isometric contraction. Our observations may have implications for human tasks that require postural stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.