SUMMARYObjective: Lennox-Gastaut syndrome (LGS) is a severe epilepsy phenotype with characteristic electroclinical features despite diverse etiologies. We previously found common cerebral networks involved during slow spike-and-wave (SSW) and generalized paroxysmal fast activity (PFA), characteristic interictal discharges. Some patients have a Lennox-Gastaut-like phenotype and cortical lesions. We wished to explore the interaction between cerebral networks and lesions in this group. Methods: 3 Tesla electroencephalography-functional magnetic resonance imaging (EEG-fMRI) on six subjects with Lennox-Gastaut phenotype and a structural lesion. Timings of SSW and PFA events were used in an event-related fMRI analysis, and to estimate the time course of the hemodynamic response from key regions. Results: (1) PFA-robust fMRI signal increases were observed in frontal and parietal association cortical areas, thalamus, and pons, with simultaneous increases in both "attention" and resting-state (default mode) networks, a highly unusual pattern. (2) SSW showed mixed increased and decreased fMRI activity, with preevent increases in association cortex and thalamus, and then prominent postevent reduction. There was decreased fMRI activity in primary cortical areas. (3) Lesion-variable fMRI increases were observed during PFA and SSW discharges. Three subjects who proceeded to lesionectomy are >1 year seizure-free. Significance: We conceptualize Lennox-Gastaut phenotype as a being a network epilepsy, where key cerebral networks become autonomously unstable. Epileptiform activity in Lennox-Gastaut phenotype, and by implication in LGS, appears to be amplified and expressed through association cortical areas, possibly because the attention and default-mode networks are widely interconnected, fundamental brain networks. Seizure freedom in the subjects who proceeded to lesionectomy suggests that cortical lesions are able to establish and maintain this abnormal unstable network behavior.LGS may be considered a secondary network epilepsy because the unifying epileptic manifestations of the disorder, including PFA and SSW, reflect network dysfunction, rather than the specific initiating process.
Objective Prior uncontrolled studies have reported seizure reductions following deep brain stimulation (DBS) in patients with Lennox–Gastaut syndrome (LGS), but evidence from randomized controlled studies is lacking. We aimed to formally assess the efficacy and safety of DBS to the centromedian thalamic nucleus (CM) for the treatment of LGS. Methods We conducted a prospective, double‐blind, randomized study of continuous, cycling stimulation of CM‐DBS, in patients with LGS. Following pre‐ and post‐implantation periods, half received 3 months of stimulation (blinded phase), then all received 3 months of stimulation (unblinded phase). The primary outcome was the proportion of participants with ≥50% reduction in diary‐recorded seizures in stimulated versus control participants, measured at the end of the blinded phase. A secondary outcome was the proportion of participants with a ≥50% reduction in electrographic seizures on 24‐hour ambulatory electroencephalography (EEG) at the end of the blinded phase. Results Between November 2017 and December 2019, 20 young adults with LGS (17–37 years;13 women) underwent bilateral CM‐DBS at a single center in Australia, with 19 randomized (treatment, n = 10 and control, n = 9). Fifty percent of the stimulation group achieved ≥50% seizure reduction, compared with 22% of controls (odds ratio [OR] = 3.1, 95% confidence interval [CI] = 0.44–21.45, p = 0.25). For electrographic seizures, 59% of the stimulation group had ≥50% reduction at the end of the blinded phase, compared with none of the controls (OR= 23.25, 95% CI = 1.0–538.4, p = 0.05). Across all patients, median seizure reduction (baseline vs study exit) was 46.7% (interquartile range [IQR] = 28–67%) for diary‐recorded seizures and 53.8% (IQR = 27–73%) for electrographic seizures. Interpretation CM‐DBS in patients with LGS reduced electrographic rather than diary‐recorded seizures, after 3 months of stimulation. Fifty percent of all participants had diary‐recorded seizures reduced by half at the study exit, providing supporting evidence of the treatment effect. ANN NEUROL 2022;91:253–267
Lennox–Gastaut Syndrome (LGS) is a category of severe, disabling epilepsy, characterized by frequent, treatment-resistant seizures, and cognitive impairment. Electroencephalography (EEG) shows characteristic generalized epileptic activity that is similar in those with lesional, genetic, or unknown causes, suggesting a common underlying mechanism. The condition typically begins in young children, leaving many severely disabled with recurring seizures throughout their adult life. Scalp EEG of the tonic seizures of LGS is characterized by a diffuse high-voltage slow transient evolving into generalized low-voltage fast activity, likely reflecting sustained fast neuronal firing over a wide cortical area. The typical interictal discharges (runs of slow spike-and-wave and bursts of generalized paroxysmal fast activity) also have a “generalized” electrical field, suggesting widespread cortical involvement. Recent brain mapping studies have begun to reveal which cortical and subcortical regions are active during these “generalized” discharges. In this critical review, we examine findings from neuroimaging studies of LGS and place these in the context of the electrical and clinical features of the syndrome. We suggest that LGS can be conceptualized as “secondary network epilepsy,” where the epileptic activity is expressed through large-scale brain networks, particularly the attention and default-mode networks. Cortical lesions, when present, appear to chronically interact with these networks to produce network instability rather than triggering each individual epileptic discharge. LGS can be considered as “secondary” network epilepsy because the epileptic manifestations of the disorder reflect the networks being driven, rather than the specific initiating process. In this review, we begin with a summation of the clinical manifestations of LGS and what this has revealed about the underlying etiology of the condition. We then undertake a systematic review of the functional neuroimaging literature in LGS, which leads us to conclude that LGS can best be conceptualized as “secondary network epilepsy.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.