Turbo compounding is one of the ways to recover wasted energy in the exhaust. This paper presents the effectiveness of series and parallel turbo compounding on a turbocharged diesel engine. A power turbine is coupled to the exhaust manifold, either in series or in parallel with the turbocharger, to recover waste heat energy. The effectiveness and working range of both configurations are presented in this paper. The engine in the current study is a 6 cylinder, 13 L diesel engine. Both the configurations were modeled with one dimensional simulation software. The current study found that series and parallel turbo compounding could improve average brake specific fuel consumption (BSFC) by 1.9% and 2.5%, respectively. When the power turbine is mechanically connected to the engine, it could increase the average engine power by 1.2% for the series configuration and 2.5% for the parallel configuration.
Exhaust energy recovery is one of the ways to improve engine’s fuel utilization. Parametric study of Air Brayton Cycle (ABC) as an exhaust energy recovery was done to see its feasibility. Parameters such as the mass flow rate, heat exchanger effectiveness, compressor and turbine efficiencies and heat exchanger pressure drop were analyzed to see their effects. It was found that the ABC can extract up to 3-4 kW of energy from the exhaust of a 5.9 liter diesel engine. This translates to about 3-4% of Brake Specific Fuel Consumption (BSFC) improvement. Careful integration of the main components is crucial to the success of the ABC as an exhaust energy recovery.
Stringent emission rules, air pollution, fluctuation of fuel price and depletion of fossil fuel resources are driving the industry to seek for better alternative of power generation. Micro gas turbine (MGT) provides a promising potential to solve the facing problems. MGT could be used in many applications such as in range extender vehicle, auxiliary power generator, power backup system, combine heat and power system, etc. Combustor plays a very crucial role in MGT system as its performance directly affects the emission quality, power output and fuel consumption of the entire system. This paper demonstrates the literature review, design methodology and performance prediction of the combustor designed for a 14.5kW MGT test rig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.