Low-penetrance alleles associated with breast cancer risk have been identified in population-based studies. Most risk loci contain either no or multiple potential candidate genes. Rat mammary carcinoma susceptibility 1b (Mcs1b) is a quantitative trait locus (QTL) on RN02 that confers decreased susceptibility when Copenhagen (COP) resistant alleles are introgressed into a Wistar Furth (WF) susceptible genome. Five WF.COP congenic lines containing COP RN02 segments were compared. One line developed an average of 3.4 ± 2.0 and 5.5 ± 3.6 mammary carcinomas per rat ± SD when females were Mcs1b resistant homozygous and Mcs1b heterozygous, respectively. These phenotypes were significantly different from susceptible genotype littermates (7.8 ± 3.1 mean mammary carcinomas per rat ± SD, P = 0.0001 and P = 0.0413, respectively). All other congenic lines tested were susceptible. Thus, Mcs1b was narrowed to 1.8 Mb of RN02 between genetic markers ENSRNOSNP2740854 and g2UL2-27. Mammary-gland-graft carcinoma-susceptibility assays were used to determine that donor (P = 0.0019), but not recipient Mcs1b genotype (P = 0.9381), was associated with ectopic mammary carcinoma outcome. Rat Mcs1b contains sequence orthologous to human 5q11.2, a breast cancer susceptibility locus identified in multiple genome-wide association studies. Human/rat MAP3K1/Map3k1 and MIER3/Mier3 are within these orthologous segments. We identified Mier3 as a candidate Mcs1b gene based on 4.5-fold higher mammary gland levels of Mier3 transcripts in susceptible compared to Mcs1b resistant females. These data suggest that the human 5q11.2 breast cancer risk allele marked by rs889312 is mammary-gland autonomous, and MIER3 is a candidate breast cancer susceptibility gene.
Varying degrees of neurologic function spontaneously recovers in humans and animals during the days and months after spinal cord injury (SCI). For example, abolished upper limb somatosensory potentials (SSEPS) and cutaneous sensations can recover in persons post-contusive cervical SCI. To maximize recovery and the development/evaluation of repair strategies, a better understanding of the anatomical locations and physiological processes underlying spontaneous recovery after SCI is needed. As an initial step, the present study examined whether recovery of upper limb SSEPs after contusive cervical SCI was due to the integrity of some spared dorsal column primary afferents that terminate within the cuneate nucleus and not one of several alternate routes. C5-C6 contusions were performed on male adult rats. Electrophysiological techniques were used in the same rat to determine forelimb evoked neuronal responses in both cortex (SSEPS) and the cuneate nucleus (terminal extracellular recordings). SSEPs were not evoked 2 days post-SCI but were found at 7 days and beyond, with an observed change in latencies between 7 and 14 days (suggestive of spared axon remyelination). Forelimb evoked activity in the cuneate nucleus at 15 but not 3 days post-injury occurred despite dorsal column damage throughout the cervical injury (as seen histologically). Neuroanatomical tracing (using 1% unconjugated cholera toxin B subunit) confirmed that upper limb primary afferent terminals remained within the cuneate nuclei. Taken together, these results indicate Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access
Genetic variation and candidate genes associated with breast cancer susceptibility have been identified. Identifying molecular interactions between associated genetic variation and cellular proteins may help to better understand environmental risk. Human MCS5A1 breast cancer susceptibility associated SNP rs7042509 is located in F-box protein 10 (FBXO10). An orthologous Rattus norvegicus DNA-sequence that contains SNV ss262858675 is located in rat Mcs5a1, which is part of a mammary carcinoma susceptibility locus controlling tumor development in a non-mammary cell-autonomous manner via an immune cell-mediated mechanism. Higher Fbxo10 expression in T cells is associated with Mcs5a increased susceptibility alleles. A common DNA-protein complex bound human and rat sequences containing MCS5A1/Mcs5a1 rs7042509/ss262858675 in electrophoretic mobility shift assays (EMSAs). Lens epithelium-derived growth factor (LEDGF), a stress-response protein, was identified as a candidate to bind both human and rat sequences using DNA-pulldown and mass spectrometry. LEDGF binding was confirmed by LEDGF-antibody EMSA and chromatin immunoprecipitation (ChIP). Ectopic expression of LEDGF/p75 increased luciferase activities of co-transfected reporters containing both human and rat orthologs. Over-expressed LEDGF/p75 increased endogenous FBXO10 mRNA levels in Jurkat cells, a human T-cell line, implying LEDGF may be involved in increasing FBXO10 transcript levels. Oxidative and thermal stress of Jurkat cells increased FBXO10 and LEDGF expression, further supporting a hypothesis that LEDGF binds to a regulatory region of FBXO10 and increases expression during conditions favoring carcinogenesis. We conclude that FBXO10, a candidate breast cancer susceptibility associated gene, is induced by cellular stress and LEDGF may play a role in expression of this gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.