The matrix protein (M1) of influenza A virus is generally viewed as a key orchestrator in the release of influenza virions from the plasma membrane during infection. In contrast to this model, recent studies have indicated that influenza virus requires expression of the envelope proteins for budding of intracellular M1 into virus particles. Here we explored the mechanisms that control M1 budding. Similarly to previous studies, we found that M1 by itself fails to form virus-like-particles (VLPs). We further demonstrated that M1, in the absence of other viral proteins, was preferentially targeted to the nucleus/perinuclear region rather than to the plasma membrane, where influenza virions bud. Remarkably, we showed that a 10-residue membrane targeting peptide from either the Fyn or Lck oncoprotein appended to M1 at the N terminus redirected M1 to the plasma membrane and allowed M1 particle budding without additional viral envelope proteins. To further identify a functional link between plasma membrane targeting and VLP formation, we took advantage of the fact that M1 can interact with M2, unless the cytoplasmic tail is absent. Notably, native M2 but not mutant M2 effectively targeted M1 to the plasma membrane and produced extracellular M1 VLPs. Our results suggest that influenza virus M1 may not possess an inherent membrane targeting signal. Thus, the lack of efficient plasma membrane targeting is responsible for the failure of M1 in budding. This study highlights the fact that interactions of M1 with viral envelope proteins are essential to direct M1 to the plasma membrane for influenza virus particle release.The late phase of the influenza A virus replication cycle is marked by the occurrence of assembly and budding at the plasma membrane of infected cells, which leads to the separation of virion and host cell membranes and ultimately results in the production of infectious virus particles. This critical step is a highly concerted process driven largely by protein-protein, protein-lipid, and protein-nucleic acid interactions (34, 40). It has been established for many years that four viral structural components, namely, the matrix protein (M1), hemagglutinin (HA), neuraminidase (NA), and M2, are actively involved in the assembly and budding process (34,35,40), although the identities of these inter-and intramolecular interactions and regulatory mechanisms for influenza A virus assembly and budding are unclear. It has also been suggested that interactions of M1 with various cytoplasmic tails (CTs) of HA, NA, and M2 are critical to drive the assembly and release of influenza A virions from the surface of infected cells (1,5,10,18,25,29,30,68). To date, these interactions have been largely speculative because direct interactions have been demonstrated only for M1 and M2 (5, 18, 29).Early investigations into the budding machinery of influenza A virus using vaccinia virus-and baculovirus-based expression systems indicated that M1 was the only viral protein absolutely required for the assembly of virus particles (14,15...
The influenza virus polymerase complex, consisting of the PA, PB1, and PB2 subunits, is required for the transcription and replication of the influenza A viral genome. Previous studies have shown that PB1 serves as a core subunit to incorporate PA and PB2 into the polymerase complex by directly interacting with PA and PB2. Despite numerous attempts, largely involving biochemical approaches, a specific interaction between PA and PB2 subunits has yet to be detected. In the current study, we developed and utilized bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in the assembly of the influenza A virus polymerase complex. Proof-of-concept experiments demonstrated that BiFC can specifically detect PA-PB1 interactions in living cells. Strikingly, BiFC demonstrated an interaction between PA and PB2 that has not been reported previously. Deletion-based BiFC experiments indicated that the N-terminal 100 amino acid residues of PA are responsible for the PA-PB2 interaction observed in BiFC. Furthermore, a detailed analysis of subcellular localization patterns and temporal nuclear import of PA-PB2 binary complexes suggested that PA and PB2 subunits interacted in the cytoplasm initially and were subsequently transported as a dimer into the nucleus. Taken together, results of our studies reveal a previously unknown PA-PB2 interaction and provide a framework for further investigation of the biological relevance of the PA-PB2 interaction in the polymerase activity and viral replication of influenza A virus.Transcription and replication of the influenza A viral genome involves a complex set of enzymatic reactions catalyzed by a heterotrimeric complex that is composed of three subunits: polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA) (7,25,37). The PB1 subunit plays a central role in both polymerase and endonuclease activity (2, 26), the PB2 subunit has cap-binding activity and is responsible for the initiation of transcription (6,7,11), and the PA subunit has been suggested to function in both transcription and replication (4,5,30,33), but its exact role remains undetermined.In order for the individual polymerase proteins to perform their various functions, the three subunits need to come together to form a viral RNA polymerase complex; however, a significant proportion of polymerase dimers and oligomers can be detected in vitro (23). Our knowledge of the viral RNA polymerase complex assembly has increased over the past several years primarily by characterizing protein-protein interactions among the individual polymerase subunits (4,5,10,30,36,38,39,45,48). It is believed that the PB1 subunit forms the core of the polymerase complex. PB1 utilizes its N-terminal region to interact with PA, while PB1 binds PB2 through its C-terminal region. A specific interaction between PA and PB2 subunits has yet to be detected (36).Two models have been proposed to explain the assembly pathway and nuclear import of the polymerase complex (PA-PB1-PB2) (4,...
The identification and elimination of persistently infected (PI) cattle are the most effective measures for controlling bovine pestiviruses, including bovine viral diarrhea virus (BVDV) and the emerging HoBi-like viruses. Here, colostrum-deprived calves persistently infected with HoBi-like pestivirus (HoBi-like PI calves) were generated and sampled (serum, buffy coat, and ear notches) on the day of birth (DOB) and weekly for 5 consecutive weeks. The samples were subjected to diagnostic tests for BVDV-two reverse transcriptase PCR (RT-PCR) assays, two commercial real-time RT quantitative PCR (RT-qPCR), two antigen capture enzyme-linked immunosorbent assays (ACE), and immunohistochemistry (IHC)-and to HoBi-like virus-specific RT-PCR and RT-qPCR assays. The rate of false negatives varied among the calves. The HoBi-like virus-specific RT-PCR detected HoBi-like virus in 83%, 75%, and 87% of the serum, buffy coat, and ear notch samples, respectively, while the HoBi-like RT-qPCR detected the virus in 83%, 96%, and 62%, respectively. In comparison, the BVDV RT-PCR test had a higher rate of false negatives in all tissue types, especially for the ear notch samples (missing detection in at least 68% of the samples). The commercial BVDV RT-qPCRs and IHC detected 100% of the ear notch samples as positive. While ACE based on the BVDV glycoprotein E rns detected infection in at least 87% of ear notches, no infections were detected using NS3-based ACE. The BVDV RT-qPCR, ACE, and IHC yielded higher levels of detection than the HoBi-like virus-specific assays, although the lack of differentiation between BVDV and HoBi-like viruses would make these tests of limited use for the control and/or surveillance of persistent HoBi-like virus infection. An improvement in HoBi-like virus tests is required before a reliable HoBi-like PI surveillance program can be designed.
The purpose of this study was to evaluate the practicality of using real-time PCR for quantifying feces-derived trichostrongyle eggs. Haemonchus contortus eggs were used to evaluate fecal contaminants, time after egg embryonation, and the presence of competing and non-competing DNAs as factors that might interfere with generating reproducible results during simplex and multiplex quantitative real-time PCR (QPCR). Real-time PCR results showed linear quantifiable amplification with DNA from five to 75 eggs. However, threshold cycle (C (T)) values obtained by amplification of DNA from egg numbers between 75 and 1,000 did not differ significantly. Inhibitors of QPCR were effectively removed during DNA extraction as exemplified by the absence of any improvement in C (T) values with bovine serum albumin or phytase treatments. Changes from egg embryonation could only be detected during the first 6 h. Noncompetitive DNA did not appear to impact amplification; however, in a multiplex reaction a competing trichostrongyle such as Cooperia oncophora can hinder amplification of H. contortus DNA, when present at tenfold greater amounts. This study demonstrates the usefulness of QPCR for amplification and quantification of trichostrongyle eggs, and identifies potential limitations, which may be addressed through multiplex assays or the addition of a standard: exogenous DNA target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.