BackgroundThe use of genome-wide (whole genome or exome) sequencing for population-based newborn screening presents an opportunity to detect and treat or prevent many more serious early-onset health conditions than is possible today.MethodsThe Paediatric Task Team of the Global Alliance for Genomics and Health’s Regulatory and Ethics Working Group reviewed current understanding and concerns regarding the use of genomic technologies for population-based newborn screening and developed, by consensus, eight recommendations for clinicians, clinical laboratory scientists, and policy makers.ResultsBefore genome-wide sequencing can be implemented in newborn screening programs, its clinical utility and cost-effectiveness must be demonstrated, and the ability to distinguish disease-causing and benign variants of all genes screened must be established. In addition, each jurisdiction needs to resolve ethical and policy issues regarding the disclosure of incidental or secondary findings to families and ownership, appropriate storage and sharing of genomic data.ConclusionThe best interests of children should be the basis for all decisions regarding the implementation of genomic newborn screening.
Continued technological advances have made the prospect of routine whole-genome sequencing (WGS) imminent. To date, much of the discussion about WGS has focused on its application and use in clinical medicine. Relatively little attention has been paid to the potential integration of WGS into newborn screening programs. Given the structure and scope of these programs, it is possible that the early applications of WGS will occur in state-run newborn screening programs. Assessment of the pressing ethical issues currently facing the newborn screening community will provide insight into the challenges that lie ahead in the genomics era.
Many scientists and doctors hope that affordable genome sequencing will lead to more personalized medical care and improve public health in ways that will benefit children, families, and society more broadly. One hope in particular is that all newborns could be sequenced at birth, thereby setting the stage for a lifetime of medical care and self-directed preventive actions tailored to each child's genome. Indeed, commentators often suggest that universal genome sequencing is inevitable. Such optimism can come with the presumption that discussing the potential limits, cost, and downsides of widespread application of genomic technologies is pointless, excessively pessimistic, or overly cautious. We disagree. Given the pragmatic challenges associated with determining what sequencing data mean for the health of individuals, the economic costs associated with interpreting and acting on such data, and the psychosocial costs of predicting one's own or one's child's future life plans based on uncertain testing results, we think this hope and optimism deserve to be tempered. In the analysis that follows, we distinguish between two reasons for using sequencing: to diagnose individual infants who have been identified as sick and to screen populations of infants who appear to be healthy. We also distinguish among three contexts in which sequencing for either diagnosis or screening could be deployed: in clinical medicine, in public health programs, and as a direct-to-consumer service. Each of these contexts comes with different professional norms, policy considerations, and public expectations. Finally, we distinguish between two main types of genome sequencing: targeted sequencing, where only specific genes are sequenced or analyzed, and whole-exome or whole-genome sequencing, where all the DNA or all the coding segments of all genes are sequenced and analyzed. In a symptomatic newborn, targeted or genome-wide sequencing can help guide other tests for diagnosis or for specific treatment that is urgently needed. Clinicians use the infant's symptoms (or phenotype) to interrogate the sequencing data. These same complexities and uncertainties, however, limit the usefulness of genome-wide sequencing as a population screening tool. While we recognize considerable benefit in using targeted sequencing to screen for or detect specific conditions that meet the criteria for inclusion in newborn screening panels, use of genome-wide sequencing as a sole screening tool for newborns is at best premature. We conclude that sequencing technology can be beneficially used in newborns when that use is nuanced and attentive to context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.