The synthesis, characterization, and coatings performance of a series of glycidyl carbamate (GC) resins synthesized from a hexamethylene diisocyanate biuret resin, glycidol, and alcohols were explored. The partial replacement of glycidol with alcohols was explored as a way to reduce the viscosity of multifunctional GC resins. Six modified GC resins were obtained by replacing one-third of the glycidol with alcohols and ether alcohols. The modified GC resins were characterized using FTIR and 13 C NMR. The alcoholmodified GC resins had significantly lower viscosity than that of the control GC resin. The effect of amount of alcohol modifier on resin viscosity was also studied by making a series of resins with different levels of modifier. Both amine-cured and self-crosslinked coatings were prepared from the resins. Coating properties such as hardness, impact strength, methyl ethyl ketone double rubs, flexibility, and adhesion were studied. Differential scanning calorimetry and thermogravimetric analysis were also used to study the thermal properties of the coatings. The resin structures and their coating performance showed an excellent correlation. The coating performance was found to be governed by the type of modifier, structural compositions of the modifier in the resins, type of amine crosslinkers, and techniques of crosslinking used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.