Summary The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide 1 . Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care 2 . Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines 3,4 that may be produced by a subset of inflammatory monocytes 5,6 , lymphopenia 7,8 and T cell exhaustion 9,10 . To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.To profile the peripheral immune response to severe COVID-19, we performed Seq-Well-based 11,12 massively parallel single-cell RNA sequencing (scRNA-seq) on eight peripheral blood samples from seven hospitalized patients with polymerase chain reaction with reverse transcription (RT-PCR)-confirmed SARS-CoV-2 infection and six healthy controls. The demographics and clinical features of these patients are listed in Fig. 1a. The seven patients profiled were male, aged 20 to >80 years. We collected samples between 2 and 16 days following symptom onset; healthy controls were asymptomatic, four male and two female, and aged 30-50 years (Fig. 1a and Extended Data Fig. 1). Four of eight COVID-19 samples were collected from ventilated patients who were diagnosed with acute respiratory distress syndrome (ARDS; Fig. 1a). One patient (C1) was sampled twice: at nine days post-symptom onset while only requiring supplemental oxygen and at 11 days post-symptom onset following intubation. Three patients received azithromycin, which
The simultaneous measurement of multiple modalities, known as multimodal analysis, represents an exciting frontier for single-cell genomics and necessitates new computational methods that can define cellular states based on multiple data types. Here, we introduce "weighted-nearest neighbor analysis", an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of hundreds of thousands of human white blood cells alongside a panel of 228 antibodies to construct a multimodal reference atlas of the circulating immune system. We demonstrate that integrative analysis substantially improves our ability to resolve cell states and validate the presence of previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets, and to interpret immune responses to vaccination and COVID-19. Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets, including paired measurements of RNA and chromatin state, and to look beyond the transcriptome towards a unified and multimodal definition of cellular identity. Availability: Installation instructions, documentation, tutorials, and CITE-seq datasets are available at http://www.satijalab.org/seurat
Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity–associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.