Molybdenum disulfide (MoS2) is an effective friction modifier that can be formed on surfaces from oil-soluble lubricant additives. Different additive chemistries can be used to form MoS2 on a surface. The tribofilms formed from three different molybdenum additives (MoDTC Dimer, MoDTC Trimer, and molybdate ester) were studied in additive monoblends and fully formulated systems. The resulting tribofilms were then characterized by Raman spectroscopic spatial mapping, XPS, and FIB-TEM. The distribution of MoS2 on the surface was much more sparse for the molybdate ester than the other additives. No crystalline molybdenum oxides were observed by Raman spectroscopy, but their presence was inferred from XPS analysis. XPS analysis showed very similar distributions of Mo oxidation states from each additive, such that the chemical nature of the films formed from all of the additives is likely similar. Each of the additive tribofilms was observed to have MoS3 vibrations in Raman and persulfide XPS peaks associated with amorphous MoS3, as such this species is presented as a common frictional decomposition product for all the additives. The MoDTC trimer is more able to produce this amorphous species on the contacting surfaces due to its structural similarities to the co-ordination polymer MoS3. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.