Chickpea is the main legume rotation crop within farming systems in northern New South Wales (NSW), Australia, and is grown mainly under rainfed conditions. Recent expansion of chickpea growing areas in southern and central western NSW expose them to abiotic stresses; however, knowledge about how these stresses affect overall crop development is limited. This study aimed to examine the influence of sowing time on the timing and duration of key chickpea phenological growth phases in southern and central western environments of NSW. Experiments were conducted over two years in southern NSW (Leeton, Wagga Wagga and Yanco (one year)) and central western NSW (Trangie) to identify phenology responses. Climatic, phenology and experimental site data was recorded, and the duration of growth phases and growing degree days calculated. Early sowing (mid-April) generally delayed flowering, extending the crop’s vegetative period, and the progressive delay in sowing resulted in shorter vegetative and podding growth phases. All genotypes showed photoperiod sensitivity, and the mean daily temperature at sowing influenced time to emergence and to some extent crop establishment. This study concludes that environmental factors such as temperature, moisture availability and day length are the main drivers of phenological development in chickpea.
Chickpea growth, development and grain yield are affected by a range of climatic and environmental factors. Experiments were conducted across four sowing dates from mid-April to the end of May, over two years at Trangie in central western New South Wales (NSW), and Leeton, Wagga Wagga and Yanco (one year) in southern NSW, to examine the influence of sowing time on biomass accumulation, grain yield and plant yield components. Climatic and experimental location data were recorded during the growing seasons. Early sowing (mid-April) resulted in taller plants, higher bottom and top pod heights, fewer pods, more unfilled pods and greater biomass accumulation, but low harvest index due to reduced grain yield compared with late sowing (end of May). Grain number was positively correlated with grain yield and was the main yield component accounting for most of the variation in yield. There was largely a positive correlation between biomass and yield, especially with delayed sowing except for Leeton experiments. This study concludes that sowing around the end of April in central western NSW and mid-May in southern NSW is conducive to higher grain yield as it minimises exposure to abiotic stresses at critical growth periods and allows efficient conversion of biomass to grain yield.
Lentil, an important pulse crop in Australia, is sown soon after the onset of autumn rains and grows mainly under rainfed conditions. This study examined lentil phenological development, growth and grain yield under different sowing dates and environments in New South Wales (NSW). Eight lentil varieties were phenotyped over two years and four sowing times in southern NSW (Leeton, Wagga Wagga and Yanco (one year)) and central western NSW (Trangie). Time of sowing affected important agronomic traits, with a delay in sowing decreasing time to flowering and podding, biomass accumulation, plant height and position of bottom pod. Sowing earlier or later than optimum decreased grain yield. Yield was mainly determined by the number of pods and seeds per plant, with minimal impact from seed weight. Overall, yields were higher in favorable environments such Leeton experiment which received more water compared to the other sites which received less water. Averaged across sowing dates, the slower maturing PBA Greenfield was lower yielding whilst fast maturing varieties such as PBA Bolt and PBA Blitz yielded higher. PBA Jumbo2 is less sensitive to environmental interaction and thus broadly adapted to the diverse environments. Optimum sowing time was identified as the end of April to mid-May.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.