Complete control of the product of a catalytic reaction can be achieved on the basis of catalyst structure, even when the reaction conditions are nearly identical. Catalyst-controlled selectivity is well established for enantioselective catalysis but less formulated for catalytic regio-, chemo-, or product-selective reactions. This Review describes selective transformations of the same starting materials into two or more different products simply by the choice of catalyst. By collecting and highlighting examples of selective catalysis, we hope that the field will be encouraged by the progress that has been made while bringing attention to unmet needs in the design and mechanistic understanding of selective catalysts.
Come together, right now: Acyltrifluoroborates and O‐benzoyl hydroxylamines come together to form amides in water (see scheme). The ligations are complete within minutes at room temperature and do not require any reagents or catalysts. The reaction has a broad substrate scope and tolerates unprotected functional groups.
Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) is a molecule with a unique history, owing to its originally misassigned structure, as well as a unique place among acylating agents, owing to its high acidity and remarkable electrophilicity. In this Account, we outline the work of our group and others toward harnessing the reactivity of Meldrum's acid derivatives in catalytic C-C bond-forming reactions. Taking advantage of the ability of Meldrum's acid to decompose to CO(2) and acetone following acyl substitution, we have shown that intramolecular Friedel-Crafts acylations can be performed under mild Lewis acidic conditions to yield a variety of benzocyclic ketones. In a further expansion of this method, a domino Friedel-Crafts acylation/alpha-tert alkylation reaction was used to complete the first total synthesis of (+/-)-taiwaniaquinol B. The unique characteristics of Meldrum's acid extend to its alkylidene derivatives, which have also proven exceptionally useful for the development of new reactions not readily accessible from other unsaturated carbonyl electrophiles. By combining the electrophilicity and dienophilicity of alkylidene Meldrum's acid with our Friedel-Crafts chemistry, we have demonstrated new domino syntheses of coumarin derivatives and tetrahydrofluorenones by conjugate additions, Diels-Alder cycloadditions, and C-H functionalizations. Additionally, we have used these powerful acceptors to allow conjugate alkenylation with functionalized organostannanes, and conjugate allylation under very mild conditions. We have also shown that these molecules permit the asymmetric formation of all-carbon quaternary stereocenters via enantioselective conjugate additions. These reactions employ dialkylzinc nucleophiles, maximizing functional group compatibility, while the presence of a Meldrum's acid moiety in the product allows a variety of postaddition modifications. A full investigation of this reaction has determined the structural factors of the alkylidene that contribute to optimal enantioselectivity. We have also used these acceptors to form tertiary propargylic stereocenters in very high enantiomeric excess by an extremely mild, Rh(I)-catalyzed addition of TMS-acetylene. Overall, we demonstrate that Meldrum's acid and its derivatives provide access to a broad range of reactivities that, combined with their ease of handling and preparation, make them ideal electrophiles.
Acylboranes are among the most elusive boron-containing organic functional groups, a fact that has impeded development of new reactions employing them as substrates. A new synthesis of acyltrifluoroborates from benzotriazole (Bt)-based N,O-acetals has been developed. Two other routes provide acyltrifluoroborates containing alcohols, aldehydes, and carbamates. The ketone-like reactivity of the acyltrifluoroborate functional group is demonstrated, and the first X-ray structure of an acyltrifluoroborate is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.