Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n=35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (p adj =6.73x10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.
Identifying genetic variants associated with lower waist-to-hip ratio can reveal new therapeutic targets for abdominal obesity. We use exome sequences from 362,679 individuals to identify genes associated with waist-to-hip ratio adjusted for BMI (WHRadjBMI), a surrogate for abdominal fat that is causally linked to type 2 diabetes and coronary heart disease. Predicted loss of function (pLOF) variants in INHBE associate with lower WHRadjBMI and this association replicates in data from AMP-T2D-GENES. INHBE encodes a secreted protein, the hepatokine activin E. In vitro characterization of the most common INHBE pLOF variant in our study, indicates an in-frame deletion resulting in a 90% reduction in secreted protein levels. We detect associations with lower WHRadjBMI for variants in ACVR1C, encoding an activin receptor, further highlighting the involvement of activins in regulating fat distribution. These findings highlight activin E as a potential therapeutic target for abdominal obesity, a phenotype linked to cardiometabolic disease.
Atrioventricular septal defects (AVSD) are a severe congenital heart defect present in individuals with Down syndrome (DS) at a > 2000-fold increased prevalence compared to the general population. This study aimed to identify risk-associated genes and pathways and to examine a potential polygenic contribution to AVSD in DS. We analyzed a total cohort of 702 individuals with DS with or without AVSD, with genomic data from whole exome sequencing, whole genome sequencing, and/or array-based imputation. We utilized sequence kernel association testing and polygenic risk score (PRS) methods to examine rare and common variants. Our findings suggest that the Notch pathway, particularly NOTCH4, as well as genes involved in the ciliome including CEP290 may play a role in AVSD in DS. These pathways have also been implicated in DS-associated AVSD in prior studies. A polygenic component for AVSD in DS has not been examined previously. Using weights based on the largest genome-wide association study of congenital heart defects available (2594 cases and 5159 controls; all general population samples), we found PRS to be associated with AVSD with odds ratios ranging from 1.2 to 1.3 per standard deviation increase in PRS and corresponding liability r2 values of approximately 1%, suggesting at least a small polygenic contribution to DS-associated AVSD. Future studies with larger sample sizes will improve identification and quantification of genetic contributions to AVSD in DS.
Genetic studies of psychiatric disorders often deal with phenotypes that are not directly measurable. Instead, researchers rely on multivariate symptom data from questionnaires and surveys like the PTSD Symptom Scale (PSS) and Beck Depression Inventory (BDI) to indirectly assess a latent phenotype of interest. Researchers subsequently collapse such multivariate questionnaire data into a univariate outcome to represent a surrogate for the latent phenotype. However, when a causal variant is only associated with a subset of collapsed symptoms, the effect will be challenging to detect using the univariate outcome.We describe a more powerful strategy for genetic association testing in this situation that jointly analyzes the original multivariate symptom data collectively using a statistical framework that compares similarity in multivariate symptom-scale data from questionnaires to similarity in common genetic variants across a gene. We use simulated data to demonstrate this strategy provides substantially increased power over standard approaches that collapse questionnaire data into a single surrogate outcome. We also illustrate our approach using GWAS data from the Grady Trauma Project and identify genes associated with BDI not identified using standard univariate techniques. The approach is computationally efficient, scales to genome-wide studies, and is applicable to correlated symptom data of arbitrary dimension (thereby aligning with National Institute of Mental Health's Research Domain Criteria).
Genetic studies of psychiatric disorders often deal with phenotypes that are not directly measurable. Instead, researchers rely on multivariate symptom data from questionnaires and surveys like the PTSD Symptom Scale (PSS) and Beck Depression Inventory (BDI) to indirectly assess a latent phenotype of interest. Researchers subsequently collapse such multivariate questionnaire data into a univariate outcome to represent a surrogate for the latent phenotype. However, when a causal variant is only associated with a subset of collapsed symptoms, the effect will be challenging to detect using the univariate outcome. We describe a more powerful strategy for genetic association testing in this situation that jointly analyzes the original multivariate symptom data collectively using a statistical framework that compares similarity in multivariate symptom-scale data from questionnaires to similarity in common genetic variants across a gene. We use simulated data to demonstrate this strategy provides substantially increased power over standard approaches that collapse questionnaire data into a single surrogate outcome. We also illustrate our approach using GWAS data from the Grady Trauma Project and identify genes associated with BDI not identified using standard univariate techniques. The approach is computationally efficient, scales to genome-wide studies, and is applicable to correlated symptom data of arbitrary dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.