Existing kinetic mechanisms for natural gas combustion are not validated under supercritical oxy-fuel conditions because of the lack of experimental validation data. Our studies show that different mechanisms have different predictions under supercritical oxy-fuel conditions. Therefore, preliminary designers may experience difficulties when selecting a mechanism for a numerical model. This paper evaluates the performance of existing chemical kinetic mechanisms and produces a reduced mechanism for preliminary designers based on the results of the evaluation. Specifically, the mechanisms considered were GRI-Mech 3.0, USC-II, San Diego 204-10-04, NUIG-I, and NUIG-III. The set of mechanisms was modeled in Cantera and compared against the literature data closest to the application range. The high pressure data set included autoignition delay time in nitrogen and argon diluents up to 85 atm and laminar flame speed in helium diluent up to 60 atm. The high carbon dioxide data set included laminar flame speed with 70% carbon dioxide diluent and the carbon monoxide species profile in an isothermal reactor with up to 95% carbon dioxide diluent. All mechanisms performed adequately against at least one dataset. Among the evaluated mechanisms, USC-II has the best overall performance and is preferred over the other mechanisms for use in the preliminary design of supercritical oxy-combustors. This is a significant distinction; USC-II predicts slower kinetics than GRI-Mech 3.0 and San Diego 2014 at the combustor conditions expected in a recompression cycle. Finally, the global pathway selection method was used to reduce the USC-II model from 111 species, 784 reactions to a 27 species, 150 reactions mechanism. Performance of the reduced mechanism was verified against USC-II over the range relevant for high inlet temperature supercritical oxy-combustion.
A team led by Gas Technology Institute (GTI), Southwest Research Institute® (SwRI®) and General Electric Global Research (GE-GR), along with the University of Wisconsin and Natural Resources Canada (NRCan), is actively executing a project called “STEP” [Supercritical Transformational Electric Power project], to design, construct, commission, and operate an integrated and reconfigurable 10 MWe sCO2 [supercritical CO2] Pilot Plant Test Facility located at SwRI’s San Antonio, Texas campus. The $119 million project is funded $84 million by the US DOE’s National Energy Technology Laboratory (NETL Award Number DE-FE0028979) and $35 million cost share by the team, component suppliers and others interested in sCO2 technology. This project is a significant step toward sCO2 cycle based power generation commercialization and will inform the performance, operability, and scale-up to commercial facilities. Supercritical CO2 (sCO2) power cycles are Brayton cycles that utilize supercritical CO2 working fluid to convert heat into power. They offer the potential for higher system efficiencies than other energy conversion technologies such as steam Rankine or organic Rankine cycles, especially when operating at elevated temperatures. sCO2 power cycles are being considered for a wide range of applications including fossil-fired systems, waste heat recovery, concentrated solar power, and nuclear. The pilot plant design, procurement, fabrication, and construction are ongoing at the time of this publication. By the end of this 6-year project, the operability of the sCO2 power cycle will be demonstrated and documented starting with facility commissioning as a simple closed recuperated cycle configuration initially operating at a 500°C (932°F) turbine inlet temperature and progressing to a recompression closed Brayton cycle technology (RCBC) configuration operating at 715°C (1319 °F).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.