Ideally antimalarial drugs can be developed which target multiple life cycle stages, thus impacting prevention, treatment and transmission of disease. Here we introduce 4-(1H)-quinolone-3-diarylethers that are selectively potent inhibitors of the parasite’s mitochondrial cytochrome bc1 complex. These compounds are highly active against the primary human malarias (falciparum and vivax), targeting the parasite at both the liver and blood stages as well as the forms that are crucial to disease transmission: gametocytes ⇒ zygotes ⇒ ookinetes ⇒ oocysts. Chosen as the preclinical candidate, ELQ-300 has good oral bioavailability at efficacious dosages in mice, is metabolically stable, and is highly active in rodent malaria models. Given a low predicted dose in patients and a long predicted half-life, ELQ-300 offers the hope of a new molecule for the treatment, prevention and, ultimately, eradication of malaria.
Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC 50 values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED 50 values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc 1 complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc 1 complex, and an M221Q amino acid substitution in the Q i site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q i site of the T. gondii cytochrome bc 1 complex.antiparasitic agents | electron transport | antimalarial | quinoline | opportunistic infection
MR1-restricted T cells (MR1Ts) are a T cell subset that recognize and mediate host defense to a broad array of microbial pathogens, including respiratory pathogens (e.g., ,, ) and enteric pathogens (e.g., and species). Mucosal-associated invariant T (MAIT) cells, a subset of MR1Ts, were historically defined by the use of a semi-invariant T cell receptor (TCR) and recognition of small molecules derived from the riboflavin biosynthesis pathway presented on MR1. We used mass spectrometry to identify the repertoire of ligands presented by MR1 from the microbes and We found that the MR1 ligandome is unexpectedly broad, revealing functionally distinct ligands derived from and The identification, synthesis, and functional analysis of mycobacterial ligands reveal that MR1T ligands can be distinguished by MR1Ts with diverse TCR usage. These data demonstrate that MR1 can serve as an immune sensor of the microbial ligandome.
Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.