Current treatments to control pathological or unwanted immune responses often use broadly immunosuppressive drugs. New approaches to induce antigen-specific immunological tolerance that control both cellular and humoral immune responses are desirable. Here we describe the use of synthetic, biodegradable nanoparticles carrying either protein or peptide antigens and a tolerogenic immunomodulator, rapamycin, to induce durable and antigen-specific immune tolerance, even in the presence of potent Toll-like receptor agonists. Treatment with tolerogenic nanoparticles results in the inhibition of CD4+ and CD8+ T-cell activation, an increase in regulatory cells, durable B-cell tolerance resistant to multiple immunogenic challenges, and the inhibition of antigen-specific hypersensitivity reactions, relapsing experimental autoimmune encephalomyelitis, and antibody responses against coagulation factor VIII in hemophilia A mice, even in animals previously sensitized to antigen. Only encapsulated rapamycin, not the free form, could induce immunological tolerance. Tolerogenic nanoparticle therapy represents a potential novel approach for the treatment of allergies, autoimmune diseases, and prevention of antidrug antibodies against biologic therapies.U ndesired immunogenicity can have a profound impact on human health. Allergies, including allergic asthma and severe food allergies, affect ∼20% of the population, and the prevalence has been steadily increasing over the past several decades (1). The prevalence of autoimmune diseases, including multiple sclerosis and type 1 diabetes, is ∼4.5% (2). Unwanted immunogenicity can also affect both efficacy and safety of biologic drugs (3), particularly in the case of protein replacement therapies for the treatment of genetic deficiencies, such as hemophilia A (4) and Pompe Disease (5). Immunomodulatory agents commonly used to control immunogenicity are often broadly immunosuppressive and typically require chronic administration that can lead to reactivation of latent pathogens, development of tumors, and opportunistic infections (6, 7). Therefore, antigen-specific, durable tolerogenic therapy would be highly desirable from an efficacy and safety perspective.Multiple techniques for antigen-specific immunotherapy have been described, although only allergen immunotherapy, wherein low doses of antigen are delivered in the absence of immunomodulating agents, is currently used in the clinic (1). Experimental approaches have included oral administration of antigen, high dose tolerance, and the use of altered peptide ligands (8). Although these methods have been successful in preclinical models, translation to human clinical trials has been largely disappointing (8). Alternative strategies to leverage tolerogenic programming associated with apoptotic cells include conjugating antigen to splenocytes (9-12) or synthetic microparticles (13, 14) or targeting antigen to the surface of red blood cells (15). Other approaches include loading particles with MHC complexes that present relevant peptides i...
Nanoparticles are finding increased uses in drug delivery applications as a means to increase treatment efficacy and improve patient care. Here, we report engineered polymeric nanoparticles that undergo a hydrophobic to hydrophilic transition at pH 5 to afford swelling and rapid release of their contents. As our clinical interest lies in the prevention of lung tumor recurrence following resection, the nanoparticles were evaluated in a model mimicking microscopic disease, akin to residual occult tumor that can remain at the resection margin following surgery. Expansile nanoparticles loaded with paclitaxel, a poorly water-soluble anticancer drug, prevent establishment of lung cancer in vivo and are superior to the conventional drug delivery method for paclitaxel using Cremophor EL/ethanol.
A biocompatible polyester dendrimer composed of the natural metabolites, glycerol and succinic acid, is described for the encapsulation of the antitumor camptothecins, 10-hydroxycamptothecin and 7-butyl-10-aminocamptothecin. The cytotoxicity of the dendrimer-drug complex toward four different human cancer cell lines [human breast adenocarcinoma (MCF-7), colorectal adenocarcinoma (HT-29), non-small cell lung carcinoma (NCI-H460), and glioblastoma (SF-268)] is also reported, and low nmol/L IC 50 values are measured. Cellular uptake and efflux measurements in MCF-7 cells show an increase of 16-fold for cellular uptake and an increase in drug retention within the cell when using the dendrimer vehicle.
The development of antidrug antibodies (ADAs) is a common cause for the failure of biotherapeutic treatments and adverse hypersensitivity reactions. Here we demonstrate that poly(lactic-co-glycolic acid) (PLGA) nanoparticles carrying rapamycin, but not free rapamycin, are capable of inducing durable immunological tolerance to co-administered proteins that is characterized by the induction of tolerogenic dendritic cells, an increase in regulatory T cells, a reduction in B cell activation and germinal centre formation, and the inhibition of antigen-specific hypersensitivity reactions. Intravenous co-administration of tolerogenic nanoparticles with pegylated uricase inhibited the formation of ADAs in mice and non-human primates and normalized serum uric acid levels in uricase-deficient mice. Similarly, the subcutaneous co-administration of nanoparticles with adalimumab resulted in the durable inhibition of ADAs, leading to normalized pharmacokinetics of the anti-TNFα antibody and protection against arthritis in TNFα transgenic mice. Adjunct therapy with tolerogenic nanoparticles represents a novel and broadly applicable approach to prevent the formation of ADAs against biologic therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.