Biometric authentication verifies a user based on its inherent, unique characteristics-who you are. In addition to physiological biometrics, behavioral biometrics has proven very useful in authenticating a user. Mouse dynamics, with their unique patterns of mouse movements, is one such behavioral biometric. In this paper, we present a user verification system using mouse dynamics, which is both accurate and efficient enough for future usage. The key feature of our system lies in using much more fine-grained (point-bypoint) angle-based metrics of mouse movements for user verification. These new metrics are relatively unique from person to person and independent of the computing platform. Moreover, we utilize support vector machines (SVMs) for accurate and fast classification. Our technique is robust across different operating platforms, and no specialized hardware is required. The efficacy of our approach is validated through a series of experiments. Our experimental results show that the proposed system can verify a user in an accurate and timely manner, and induced system overhead is minor.
Biometric authentication verifies a user based on its inherent, unique characteristics—who you are. In addition to physiological biometrics, behavioral biometrics has proven very useful in authenticating a user. Mouse dynamics, with their unique patterns of mouse movements, is one such behavioral biometric. In this article, we present a user verification system using mouse dynamics, which is transparent to users and can be naturally applied for continuous reauthentication. The key feature of our system lies in using much more fine-grained (point-by-point) angle-based metrics of mouse movements for user verification. These new metrics are relatively unique from person to person and independent of a computing platform. Moreover, we utilize support vector machines (SVMs) for quick and accurate classification. Our technique is robust across different operating platforms, and no specialized hardware is required. The efficacy of our approach is validated through a series of experiments, which are based on three sets of user mouse movement data collected in controllable environments and in the field. Our experimental results show that the proposed system can verify a user in an accurate and timely manner, with minor induced system overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.